University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

2018/19

 $\frac{\text{Final}}{\text{Thursday, December 20, 2018, 7:00 pm }-10:00 \text{ pm}}$

FAMILY NAME: _____

GIVEN NAMES: _____

STUDENT NUMBER: _____

SIGNATURE:_____

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

FOR MARKERS ONLY	
Question	Marks
1	/ 10
2	/ 15
3	/ 15
4	/ 15
5	/ 15
6	/ 15
7	/ 15
TOTAL	/100

No books or calculators may be used

You may use any theorems stated in class, as long as you state them clearly and correctly.

(1) (10 pts) (a) State the Cauchy-Riemann equations. Solution:

$$u_x = v_x, v_x = -u_y$$

(b) Let f(x, y) be a complex-valued function on the complex plane. Show that if $\partial f/\partial y = 0$ for all x and y then f is constant. Solution:

 $f_y = 0$ so f=u(x,y) + iv(x,y) then $u_y = v_y = 0$. By C-R, also $v_x = u_x = 0$ This implies f = const because $\partial f / \partial x = \partial f / \partial y = 0$.

(2) (15 pts) Compute

$$\int_{|z|=2} \frac{dz}{(z-1)(z-i)^2}.$$

The line integral is around a circle of radius 2 and center 0 in the complex plane. Solution:

This function has two poles, one at z = 1 and the other at z = i. The residue at z = 1 is $1/(1-i)^2$. The residue at z = i is h'(i) where $h(z) = (z-1)^{-1}$. So this residue at z = i is $-1/(i-1)^2$. Hence the integral is

$$2\pi i(1/(1-i)^2 - 1/(1-i)^2) = 0.$$

(3) (15 pts)

(a) (8 points) Find the Laurent series of $\frac{1}{(z+1)^2}$ around 0. What it its radius of convergence ? Solution:

$$1/(z+1)^2 = -d/dz(1/(1+z))$$

$$1/(1+z) = 1 - z + z^2 - z^3 + \dots$$

$$1/(1+z)^2 = 1 - 2z + 3z^2 - \dots$$

Radius of convergence 1.

(b) (7 pts) Find the Laurent series of $\frac{1}{z+1}$ around 11. What is its radius of convergence?

Solution:

 $1/(z+1) = 1/(z-1+2) = (1/2))1/(1+2/(z-1)) = (1/2)(1-2/(z-1)+(2/(z-1)^2)-\dots$ The radius of convergence is 1. (4) (15 pts)

Compute the integral

$$\int_{\gamma} z^n (1-z)^m dz$$

where m is a nonnegative integer and n is an integer. The curve γ is a circle of radius 2 and center 0 in the complex plane.

Solution:

$$(1-z)^m = \sum_{k=0}^m (mchoosek)(-z)^k$$
$$\int_{\gamma} z^n (1-z)^m dz = \sum_{k=0}^m (mchoosek)(-1)^k z^{k+n} dz$$

This is only nonzero if k + n = -1, in which case the integral is $2\pi i$. So the answer is

$$2\pi i (mchoosen - 1).$$

(5) (15 pts) Use the Cauchy integral formula to compute the integral

$$\int_{\gamma} \frac{z^3 + 5}{z - i} dz$$

Here γ is a circle of radius 2 and center 0 in the complex plane. Solution:

$$f(a) = \frac{1}{2\pi i} \int f(w) / (w - a) dw$$

so here

$$f(z) = z^3 + 5$$

and the integral is

$$2\pi i f(i) = 2\pi i (-i+5) = 2\pi + 10\pi i$$

(6) (15 pts)

(a) Find the singularities of $\frac{\cos(z)}{\sin(z)}$. State the type of singularity (removable singularity, pole, essential singularity). If a pole, compute the order of the pole.

Solution: This function is singular when $\sin(z) = 0$, in other words when $z = n\pi$. Because $\cos(z)$ is nonozero at those values and $\sin(z)$ has a zero of order 1 ($\sin(z) = (z - n\pi) + ...$), or the first derivative of $\sin(z)$ at these zeroes is nonzero), we find that

(b) Compute the residue of $\frac{\cos(z)}{\sin(z)}$ at z = 0.

Solution: Because the leading order term of sin(z) at z = 0 is z, and cos(0) = 1, we find that the residue of this function at z = 0 is 1.

(7) (15 points)

Use residues to compute the integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}.$$

Solution: Complete the contour to a semicircle with radius R. Then

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)} + \int_{\Gamma_R} f(z)dz = 2\pi i) \operatorname{Res}_{z=i} f(z) + \operatorname{Res}_{z=3i} f(z).$$

The residues are

$$Res_{z=i}f(z) = 1/(2i))(8)$$

 $Res_{z=3i}f(z) = 1/6i(-7)$

The contour integral is

$$\frac{z=Re^{i\theta}}{Re^{i\theta}id\theta} \overline{(R^2e^{2i\theta}+1)(R^2e^{2i\theta}+9)}$$

The absolute value of this is less than

$$\int \frac{Rd\theta}{(R^2 - 1)(R^2 - 9)}$$

which tends to 0 as $R \to \infty$.

(This blank page for question 2)