University of Toronto at Scarborough Department of Computer and Mathematical Sciences

Final
Thursday, December 20, 2018, 7:00 pm -10:00 pm

FAMILY NAME: \qquad
GIVEN NAMES: \qquad
STUDENT NUMBER: \qquad

SIGNATURE:

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

FOR MARKERS ONLY	
Question	Marks
1	$/ 10$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 15$
TOTAL	$\mathbf{1 0 0}$

No books or calculators may be used
You may use any theorems stated in class, as long as you state them clearly and correctly.
(1) (10 pts) (a) State the Cauchy-Riemann equations.

Solution:

$$
u_{x}=v_{x}, v_{x}=-u_{y}
$$

(b) Let $f(x, y)$ be a complex-valued function on the complex plane. Show that if $\partial f / \partial y=0$ for all x and y then f is constant.

Solution:
$f_{y}=0$ so $\mathrm{f}=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ then $u_{y}=v_{y}=0$. By C-R, also $v_{x}=u_{x}=0$ This implise $f=$ const because $\partial f / \partial x=\partial f / \partial y=0$.
(2) (15 pts) Compute

$$
\int_{|z|=2} \frac{d z}{(z-1)(z-i)^{2}}
$$

The line integral is around a circle of radius 2 and center 0 in the complex plane.
Solution:
This function has two poles, one at $z=1$ and the other at $z=i$. The residue at $z=1$ is $1 /(1-i)^{2}$. The residue at $z=i$ is $h^{\prime}(i)$ where $h(z)=(z-1)^{-1}$. So thhe residue at $z=i$ is $-1 /(i-1)^{2}$. Hence the integral is

$$
2 \pi i\left(1 /(1-i)^{2}-1 /(1-i)^{2}\right)=0
$$

(3) (15 pts)
(a) (8 points) Find the Laurent series of $\frac{1}{(z+1)^{2}}$ around 0 . What it its radius of convergence ? Solution:

$$
\begin{gathered}
1 /(z+1)^{2}=-d / d z(1 /(1+z)) \\
1 /(1+z)=1-z+z^{2}-z^{3}+\ldots \\
1 /(1+z)^{2}=1-2 z+3 z^{2}-\ldots
\end{gathered}
$$

Radius of convergence 1 .
(b) (7 pts) Find the Laurent series of $\frac{1}{z+1}$ around 11 . What is its radius of convergence?

Solution:
$1 /(z+1)=1 /(z-1+2)=(1 / 2)) 1 /(1+2 /(z-1))=(1 / 2)\left(1-2 /(z-1)+\left(2 /(z-1)^{2}\right)-\ldots\right.$
The radius of convergence is 1 .
(4) (15 pts)

Compute the integral

$$
\int_{\gamma} z^{n}(1-z)^{m} d z
$$

where m is a nonnegative integer and n is an integer. The curve γ is a circle of radius 2 and center 0 in the complex plane.

Solution:

$$
\begin{aligned}
(1-z)^{m} & =\sum_{k=0}^{m}(\text { mchoosek })(-z)^{k} \\
\int_{\gamma} z^{n}(1-z)^{m} d z & =\sum_{k=0}^{m}(\text { mchoosek })(-1)^{k} z^{k+n} d z
\end{aligned}
$$

This is only nonzero if $k+n=-1$, in which case the integral is $2 \pi i$. So the answer is

$$
2 \pi i(m c h o o s e n-1) .
$$

(5) (15 pts) Use the Cauchy integral formula to compute the integral

$$
\int_{\gamma} \frac{z^{3}+5}{z-i} d z
$$

Here γ is a circle of radius 2 and center 0 in the complex plane. Solution:

$$
f(a)=\frac{1}{2 \pi i} \int f(w) /(w-a) d w
$$

so here

$$
f(z)=z^{3}+5
$$

and the integral is

$$
\begin{gathered}
2 \pi i f(i) \\
=2 \pi i(-i+5)=2 \pi+10 \pi i
\end{gathered}
$$

(6) (15 pts)
(a) Find the singularities of $\frac{\cos (z)}{\sin (z)}$. State the type of singularity (removable singularity, pole, essential singularity). If a pole, compute the order of the pole.

Solution: This function is singular when $\sin (z)=0$, in other words when $z=n \pi$. Because $\cos (z)$ is nonozero at those values and $\sin (z)$ has a zero of order $1(\sin (z)=$ $(z-n \pi)+\ldots)$, or the first derivative of $\sin (z)$ at these zeroes is nonzero), we find that
(b) Compute the residue of $\frac{\cos (z)}{\sin (z)}$ at $z=0$.

Solution: Because the leading order term of $\sin (z)$ at $z=0$ is z, and $\cos (0)=1$, we find that the residue of this function at $z=0$ is 1 .
(7) (15 points)

Use residues to compute the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}
$$

Solution: Complete the contour to a semicircle with radius R. Then

$$
\left.\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}+\int_{\Gamma_{R}} f(z) d z=2 \pi i\right) \operatorname{Res}_{z=i} f(z)+\operatorname{Res}_{z=3 i} f(z)
$$

The residues are

$$
\begin{aligned}
& \left.\operatorname{Res}_{z=i} f(z)=1 /(2 i)\right)(8) \\
& \operatorname{Res}_{z=3 i} f(z)=1 / 6 i(-7)
\end{aligned}
$$

The contour integral is

$$
\begin{gathered}
z=R e^{i \theta} \\
\frac{R e^{i \theta} i d \theta}{\left(R^{2} e^{2 i \theta}+1\right)\left(R^{2} e^{2 i \theta}+9\right)}
\end{gathered}
$$

The absolute value of this is less than

$$
\int \frac{R d \theta}{\left(R^{2}-1\right)\left(R^{2}-9\right)}
$$

which tends to 0 as $R \rightarrow \infty$.
(This blank page for question 2)

