MATC34 - Fall 2006

MIDTERM EXAM

November 4, 2006, 9-11 AM

1. Find all solutions of the following equation:

$$
z^{6}+(i-1) z^{3}-i=0
$$

Let $w=z^{3}$. Then $w^{2}+(i-1) w-i=0$ which gives the solutions $w_{1}=1$ and $w_{2}=-i$. We can see this by factorizing the polynomial, or we could use the usual formula:

$$
w_{1,2}=\frac{1-i \pm \sqrt{(i-1)^{2}}+4 i}{2}=\frac{1-i \pm \sqrt{(i+1)^{2}}}{2}=\frac{1-i \pm(i+1)}{2}
$$

Now we need to solve $z^{3}=1$ and $z^{3}=-i$. The first gives the third roots of unity as solutions: $z_{1}=1, z_{2}=-\frac{1}{2}+\frac{\sqrt{3}}{2}, z_{3}=-\frac{1}{2}-\frac{\sqrt{3}}{2}$. To solve the second one we write $i=e^{i \frac{3}{2} \pi}$. From $z^{3}=e^{i \frac{3}{2} \pi}$ we get $z_{4}=e^{i \frac{1}{2} \pi}=i, z_{5}=e^{i\left(\frac{1}{2}+\frac{2}{3}\right) \pi}=-\frac{\sqrt{3}}{2}-i \frac{1}{2}, z_{6}=e^{i(1 / 2+4 / 3) \pi}=\frac{\sqrt{3}}{2}-i \frac{1}{2}$.
2. (a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $z_{0} \in \mathbb{C}$. Give the definition of the following statements

- f is differentiable at z_{0}

The limit of $\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}$ exists as $h \rightarrow 0$ (along every possible sequence converging to 0 in \mathbb{C}).

- f is analytic at z_{0}
f is differentiable in a neighborhood of z_{0}.
(b) Suppose f is an entire function with $f(x+i y)=u(x)+i v(y)$ where u, v are real functions. Prove, that $f(z)=a z+b$ where a, b are constants.

By the Cauchy-Riemann equations, if f is entire and $f(x+i y)=u(x, y)+i v(x+i y)$ then $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. The first equation in our case tells us that $u^{\prime}(x)=v^{\prime}(y)$. The left-hand side depends on x, the right-hand side depends on y, so the only way this could work if $u^{\prime}(x)=v^{\prime}(y)=a$ where a is a (real) constant. This means that $u(x)=a x+b_{1}$ and $v(y)=a y+b_{2}$ and thus $f(z)=a z+b_{1}+i b_{2}$.
3. Give an example where the value of the line integral depends on the path of integration. I.e. find smooth curves C_{1}, C_{2} with the same starting and end points and a function f which is analytic on both curves for which

$$
\int_{C_{1}} f \neq \int_{C_{2}} f
$$

If we integrate f on C_{1} and then on $-C_{2}$ then we get a closed path. If the two integrals don't give the same value, then the integral on this closed curve is not 0 , so f cannot be entire. One possibility: let $f(z)=1 / z, C_{1}$ is the upper half of the $|z|=1$ circle (i.e. $z(t)=e^{i t}, 0 \leq t \leq \pi$) and C_{2} is the lower half of the same circle ($\left.e^{-i t}, 0 \leq t \leq \pi\right)$. Since the integral of $1 / z$ on the whole circle is $2 \pi i$, the two integrals cannot be the same. (Actually, one is πi, the other is πi.)
4. Suppose that f is an entire function and $f(0), f^{\prime}(0), f^{(2)}(0), f^{(3)}(0), \ldots$ are all real. Prove that

$$
f(\bar{z})=\overline{f(z)}
$$

f is entire, so it has a power series representation around 0: $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. We know that $a_{k}=\frac{f^{(k)}(0)}{k!}$, so all coefficients are real. Then (using $\left.(\bar{z})^{k}=\overline{z^{k}}\right)$

$$
\overline{f(z)}=\overline{\sum_{k=0}^{\infty} a_{k} z^{k}}=\sum_{k=0}^{\infty} a_{k} \bar{z}^{k}=f(\bar{z})
$$

5. Show that for all $z \in \mathbb{C}$

$$
\sin (\pi / 2-z)=\cos (z)
$$

Both sides define entire functions, and for $z \in \mathbb{R}$ the two sides are equal. Thus by the Uniqueness Theorem the identity holds for all $z \in C$.
Or: use the definitions of sin and cos using the exponential function and prove the identity directly.
6. (a) State the Cauchy Integral Formula for entire functions.

Suppose f is entire, C is a circle and a is inside the circle. Then $f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w$, where the path of integration is in the positive direction.
(b) Explain how it can be used to show that an entire function has a power series representation. (Give only the main idea of the proof, don't worry about the details.)

We applied the Cauchy Integral Formula for a fixed z and a large enough circle with the origin as its center. We expressed $\frac{1}{w-z}$ as a power series in z (using $\left.|w|>|z|\right)$ and then exchanged the integrals and the summation (we can do that since the convergence is uniform). This gives the power series expansion around 0 , and from that we can get the general case by shifting the whole picture.
7. Suppose that f is analytic and bounded by 1 on the disk $|z| \leq 2$ and that $f(1 / 2)=0$. Show that

$$
|f(1)| \leq \frac{2}{7}
$$

Let $g(z)=f(2 z)$. Then g is analytic and bounded by 1 on the disk $|z| \leq 1$ and $g(1 / 4)=0$. By the usual arguments we get that $|g(1 / 2)| \leq\left|B_{1 / 4}(1 / 2)\right|=\frac{1 / 2-1 / 4}{1-1 / 8}=2 / 7$. Since $g(1 / 2)=f(1)$, this proves the inequality.
8. Suppose that f is an entire function for which

$$
|f(z)| \leq|\sin (z)| \quad \text { and } \quad|f(z)| \leq|\cos (z)|
$$

Show that $f(z)=0$ for all $z \in \mathbb{C}$.
(Hint: First find all the entire functions satisfying the first inequality.)

If $\left|f(z) \leq|\sin (z)|\right.$ then $g(z)=\frac{f(z)}{\sin (z)}$ must be an entire function (if $\sin (z)=0$ then $f(z)$ must be 0 as well, so we can define $g(z)$ analytically there) and $|g(z)| \leq 1$. But by the Liouville Theorem $g(z)$ must be constant (with modulus at most one), so $f(z)=c_{1} \sin (z)$ with $\left|c_{1}\right| \leq 1$. Similarly, if we look at the second inequality, we get that $f(z)$ must be equal to $c_{2} \cos (z)$ with $\left|c_{2}\right| \leq 1$. Thus $f(z)=c_{1} \sin (z)=c_{2} \cos (z)$ for all $z \in \mathbb{C}$, and this can only hold if $c_{1}=c_{2}=0$.

