9. Conformal Mapping

Definition 9.1. A circline is a circle or a line in the complex plane.
Definition 9.2. The Riemann sphere is the complex plane \mathbf{C} with one extra point added (the "point at infinity"). We can think of this as the union of two copies of \mathbf{C}, with one of them parametrized by z and the other by w with the convention

$$
z w=1
$$

leading to $z=0$ iff $w=\infty$ and $w=0$ iff $z=\infty$.
Definition 9.3. (inverse points) α and β are inverse points w.r.t. the circle $|z-a|=r$ if

$$
(\alpha-a)(\bar{\beta}-\bar{\alpha})=r^{2}
$$

α and β are inverse with respect to a straight line ℓ if β is the reflection of α in ℓ.
Remark 9.4. Given a pair of points and a third point, there is exactly one circline for which the pair of points are inverse points with respect to the circline and the third point is in the circline.

9.1. Conformal Mapping.

Theorem 9.5. If f is holomorphic in an open set G and $f^{\prime}(z) \neq 0$ for some $z \in G$, then f preserves angles between lines meeting at z.
Definition 9.6. A mapping f is conformal in an open set G if f is holomorphic on G and $f^{\prime}(z) \neq 0$ for any $z \in G . f$ is conformal at a point w if it is conformal on some small disc containing w.

A conformal mapping preserves the sign of angles as well as their size. If $f^{\prime}(z)=0$, then f does not preserve angles at z. For example the map $f(z)=z^{2}$ doubles the angles at $z=0$.
9.2. Construction of conformal maps. If we want a conformal map to send the upper half plane $H=\mid\{x+i y \mid y>0\}$ onto the open unit disc $D(0 ; 1)$, we require that f is conformal on H and f sends the line $\{x+i y \mid y=0\}$ to the circle $|z|=1$. This is accomplished by a linear fractional transformation or Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

. We find

$$
f(z)=\frac{z-i}{z+i}
$$

since it is easy to see that this map sends the real axis to the unit circle.

Remark 9.7. If f and g are conformal maps, then so is $f \circ g$.
Theorem 9.8. If $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ are in \mathbf{C} and $z_{1} \neq z_{2} \neq$ $z_{3}, w_{1} \neq w_{2} \neq w_{3}$. Then there is a unique Möbius transformation taking z_{j} to w_{j} for all $j=1,2,3$.

So to find a conformal map taking one circline to another, we just have to solve the equation for the map to send three specified points to three other specified points.
(A line is a special case of a circline, since all lines contain the point at infinity. For any two points in the complex plane there is only one line passing through both of them.)

The procedure to find a conformal map taking one region to another is to identify such a conformal map as the composition of a number of conformal maps using a table showing some standard conformal maps and the image of the unit circle under these maps.

9.3. Harmonic functions.

Definition 9.9. A real-valued function $u(x, y)$ is harmonic if
(1) The partial derivatives of u are continuous, and

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \tag{2}
\end{equation*}
$$

Theorem 9.10. If $f=u+i v$ is holomorphic, then u is harmonic.
9.3.1. Harmonic conjugates. If $u(x, y)$ is harmonic, then there is a harmonic conjugate v for which $u+i v$ is holomorphic. This means u and v satisfy the Cauchy-Riemann equations. To find the harmonic conjugate, we solve the Cauchy-Riemann equations for v.

Example 9.1. Let $u(x, y)=2 x y$. Then

$$
u_{x}=2 y .
$$

Using the Cauchy-Riemann equations,

$$
v_{y}=2 y
$$

so

$$
v(x, y)=y^{2}+h(x)
$$

Now differentiate v with respect to x :

$$
v_{x}=\frac{d h}{d x}
$$

Now impose the Cauchy-Riemann equation:

$$
\left(v_{x}=\right)-u_{y}=\frac{d h}{d x}
$$

Now differentiate u with respect to y :

$$
u_{y}=2 x
$$

so we have

$$
\frac{d h}{d x}=-2 x
$$

and $h=-x^{2}+C$ where C is a constant. It follow that the harmonic conjugate is

$$
v=y^{2}-x^{2}+C
$$

Notice that $-v$ (respectively u) are the real (respectively imaginary) parts of $f(z)=z^{2}$.

9.4. Conformal maps sending the upper half plane to the unit

disk. If f sends the upper half plane to the unit cirle, let

$$
f(z)=\frac{a z+b}{c z+d}
$$

Because $|f(z)|=1$ when z is a real number, we have

$$
\frac{a x+b}{c x+d}=1 .
$$

Taking $x=0$ we have $|b|=|d|$. Taking $x=\infty$ we have $|a|=|c|$. We may assume $a=1$, as long as $a \neq 0$ (divide both the numerator and denominator by a so that a is replaced by 1). So we have writing $b=r e^{i \theta}$

$$
f(x)=\frac{x+r e^{i \theta}}{e^{i \psi} x+r e^{i \phi}}
$$

which is on the unit circle. This implies

$$
\left|x+r e^{i \theta}\right|=\left|x+r e^{i(\phi-\psi)}\right|
$$

This implies (taking the square of the absolute value and matching the coefficients of x and x^{2}) that either

$$
e^{i \theta}=e^{i(\phi-\psi)}
$$

or

$$
e^{i \theta}=e^{-i(\phi-\psi)}
$$

So our map is

$$
f(x)=e^{-i \psi}\left(\frac{x+r e^{i \theta}}{x+r e^{i \theta}}\right)
$$

or

$$
f(x)=e^{-i \psi}\left(\frac{x+r e^{i \theta}}{x+r e^{-i \theta}}\right)
$$

The first map sends the entire real axis to $e^{-i \psi}$ (this is a conformal map, but not the one we want). The second map sends

$$
\begin{equation*}
f(x)=e^{-i \psi}\left(\frac{x+a}{x+\bar{a}}\right) \tag{1}
\end{equation*}
$$

for some real number ψ and some complex number a.
The example presented in class

$$
\begin{equation*}
f(z)=\frac{z-i}{z+i} \tag{2}
\end{equation*}
$$

takes the upper half plane to the unit circle, but it is not the only conformal map that takes the upper half plane to the unit circle. (2) is a special case of (1) (taking $\psi=0$ and $a=-i$). All other conformal maps taking the upper half plane to the unit circle are obtained by composing with conformal maps g taking $(1,-1, i)$ to general values in the unit circle

$$
\begin{gathered}
g(1)=e^{i C} \\
g(-1)=e^{i A} \\
g(i)=e^{i B}
\end{gathered}
$$

This means

$$
\begin{gathered}
\frac{a+b}{c+d}=e^{i C} \\
\frac{-a+b}{-c+d}=e^{i A} \\
\frac{a+i b}{c+i d}=e^{i B} \\
g(z)=\frac{a z+b}{c z+d}
\end{gathered}
$$

where we set $a=1$ and solve

$$
\begin{gather*}
b-e^{i C} c-e^{i C} d=-1 \tag{3}\\
b+e^{i A} c+e^{i A} d=+1 \tag{4}\\
i b-e^{i B} c-i e^{i B} d=-1 \tag{5}
\end{gather*}
$$

Subtracting (4) from (3)

$$
\binom{c}{d}=\frac{1}{\operatorname{det}(R)} R\binom{-2}{-1+i}
$$

where R is the matrix

$$
R=\left(\begin{array}{cc}
-e^{i C}+i e^{i B} & e^{-i C}+e^{i A} \\
e^{i C}-i e^{i B} & -e^{i C}-e^{i A}
\end{array}\right)
$$

Finally we solve for b using (3).

