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1. Evaluate each of the following integrals.
a)

∫
γ

1
z−9 dz where γ is the unit circle, oriented counterclockwise.

Soln:
∫

γ
1

z−9
dz = 0 since 1

z−9
is holomorphic in the interior of γ.

b)
∫

γ
e2z/z5 dz where γ is the unit circle, oriented counterclockwise.

Soln: Letting f(z) = e2z, by the Cauchy Integral Formula for derivatives,

∫
γ

e2z/z5 dz = 2πif (4)(0)/4! = 2πi 24e0/4! = 4πi/3

c)
∫

γ
e3z dz where γ is the graph of y =

√
x from (0, 0) to (4, 2).

Soln: Letting g(z) = e3z/3, the integral, which is independent of the path, is given by∫
γ

e3z dz = g(4 + 2i) − g(0) = e12+6i−1
3 .

2. Suppose f : D → C is holomorphic and that Re f is constant. Show that f(z) is
constant.

Soln: Write f + u + iv where u = Re f and v = Im f . Since u is constant, ∂u/∂x = 0
and ∂u/∂y = 0. Therefore by the Cauchy-Riemann equations ∂v/∂x = −∂u/∂y = 0 and
∂v/∂y = ∂u/∂x = 0 and so v is contant. Therefore f is constant.

3. For each of the following functions, list the points where the function is singular,
and for each singularity determine the type of the singularity (removable, pole, or
essential). In the case of poles, give the order of the pole. (Explain your choices, but
only a brief explanation is expected.)

a) e1/z

z−1

Soln: The singularties are at z = 0 and z = 1. Since e1/z is analytic at z = 1, the
singularity at z = 1 is a pole or order 1. Since 1/(z−1) is analytic at z = 0 and the Laurent
series for e1/z about z = 0 has nonzero coeffiecients of zn for all n < 0, the singularity at
z = 0 is essential.

b) 1
(z−i) sin z

Soln:
The singularties are at z = i and z = nπ for every integer n. Since limz→nπ

z−nπ
(z−i) sin z

exists for all n (as can be seen using Lôpital’s Rule, for example), the singularites at z = nπ
are all poles of order 1, and similarly the singularity at z = i is a pole of order 1.

c) ez−e−z

z

1



Soln: The only singularty is at z − 0. Since limz→0
ez−e−z

z exists, the singularity at
z = 0 is removable.

4. a) Find the Laurent series expansion of sin z
z2 about z = 0 which is valid in the

domain |z| > 0.

Soln: sin z = z − z3

3! + z5

5! + . . . =
∑∞

n=0(−1)n z2n+1

(2n+1)! so dividing by z2 gives

sin z

22
=

∞∑
n=0

(−1)n z2n−1

(2n + 1)!

b) Find the Laurent series expansion of f(z) = −1
(z−1)(z−3)

about z = 0 in some

domain which includes the point 1 + i.

Soln: The singularities of f(z) are at z = 1 and z = 3 which have distance 1 and 3
respectively from z = 0. Since the distance of 1 + i to 0 is

√
2 which lies between 1 and 3,

the Laurent series required will be the one which converges in the annulus A := {z | 1 <
|z| < 3}. By partial fractions

f(z) =
1

2(z − 1)
− 1

2(z − 3)
= f2(z) + f1(z)

where f2(z) = 1
2(3−z)

and f1(z) = 1
2(z−1)

. Since f2(z) is analytic in |z| < 3 the Laurent

series of f2 within A is its Taylor series

f2(z) =
1

6

∑ 1

1 − z/3
=

1

6

∞∑
n=0

zn

3n
.

Since f1(z) is analytic in |z| > 1, letting ζ = 1/z, the Laurent series of f1(z) is the Taylor
series of f1(ζ) which is

f1(ζ) =
1

2(1/ζ − 1)
=

1

2

ζ

1 − ζ
=

ζ

2

∞∑
n=0

ζn =
1

2

∞∑
n=0

z−(n+1).

Therefore the Laurent series of f(z) valid at z = 1 + i is

f(z) =
1

6

∑ 1

1 − z/3
=

1

6

∞∑
n=0

zn

3n
+

1

2

∞∑
n=0

z−(n+1).

5. In each of the following, compute the residue Resa f for the given function f(z) at the
given point a.
a) f(z) = ez

z3 ; a = 0.

Soln.: f(z) = 1
z3 + 1

z2 + 1
2!z + . . . so Res0 f(z) = 1/2.
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b) f(z) = eπz

z2+1 ; a = i.

Soln: f(z) = eπz

z2+1 = eπz

(z+i)(z−i) = g(z)
z−i where g(z) = eπz

z+i . Since g(z) is holomorphic
at z = i,

Resif(z) = g(i) = eπi

2i = − 1
2i = i

2 .

6. Use the methods of complex analysis to evaluate
∫ ∞

−∞
cos x

(x2+1)2
dx

Soln.: ∫ ∞

−∞

cos x

(x2 + 1)2
dx = Re

∫ ∞

−∞

eix

(x2 + 1)2
dx.

Let f(z) = eiz

(z2+1)2 . Since |z|
|z|4+1 is bounded as z → ∞, a theorem from class tells us that

∫ ∞

−∞

eix

(x2 + 1)2
dx = 2πi

∑
Residues of f(z) in upper half plane.

The only singularity of f(z) in the upper half plane is at z = i. Write f(z) = eiz

(z+i)2(z−i)2
=

g(z)
(z−i)2 where g(z) = eiz

(z+i)2 . Then Resi f(z) = g′(i). Since g′(z) = (z+i)2ieiz−eiz2(z+i)
(z+i)4 we

get

g′(i) =
(2i)2ie−1 − e−12(2i)

(2i)4
= − i

2e
.

Therefore ∫ ∞

−∞

eix

(x2 + 1)2
dx = 2πi

−i

2e
=

π

e

and so ∫ ∞

−∞

cos x

(x2 + 1)2
dx = Re

π

e
=

π

e
.
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