Math C31 Term test October 30, 2004

Your name Balint	Vives	
Student ID	0	

There are 6 problems on this exam. Do all problems, each is worth 20 points. Start with the easier problems. This is a closed book exam. No calculators are allowed.

	Problem	Points
	1	
	2	
	3	
	4	
-	5	
	6	
	Total	

Problem 1. (a) Define: open subset of C
A is open if for all ZEA Ir>o st.
D(2,r) CA.
(b) Define: a function f is analytic at a point z .
f is analytic at z if for some while.
Bof to for all WEB
(c) Define: entire function. (c) Define: entire function. $h \rightarrow o \qquad h$ Exists.
of is white if it is analytic at all zec.
(d) Define the line linegral
$\int_C f(z) dz \qquad \qquad (4)$
If y is a differentiable come that
parent vies C, and g: [ais] -> C
0 0 0 0 0 0 0 0 0 0

thun St(+)d+= St(x(+)))(+)d+

(e) State the closed curve theorem (the version for entire functions will do).

Problem 2. Let $A = \mathbb{C} \setminus \{0\}$. Prove that A is open.

Let $\mp \in A$, then $D(\mp, |\mp|) \subset A$, because if $w \in D(\mp, |\mp|)$ then

* $|\mp - w| < |\mp|$, and by the triangle inequality

|w| $+ |\mp - w| \geqslant |\mp|$ |w| $\mp |\mp| - |\mp| > 0$.

So |w| ∓ 0 , $w \neq 0$ and $w \in A$.

Problem 3. Let $u: \mathbb{R} \to \mathbb{R}$ be a function with continuous derivative. (a) Prove that f(z) := u(Re(z)) + iu(Im(z)) has a complex derivative at z if z = (1+i)r, where r is a real number.

(1) I has a cts. derivative in
$$x_i$$
 y

and i setting $x=y=r$:

(1) The Candy-Licemann equations as

satisfied: Let $\tilde{u}(x_iy)=u(x)$

and $\tilde{v}(x_iy)=u(y)$

then $\partial_x \tilde{u}=u^i$ is $u(x_iy)=u^i(y)=$

(b) Prove that if $u(x) = x^2$ then f is not an entire function. You may use any theorems we learned, but state clearly what you use.

$$f(x) = x^{2} + iy^{2}$$
Cluck at $z = 1y$ so $x = 1$, $y = 0$.
$$\partial_{x}u = 2x = 1$$

$$\partial_{y}v = 2y = 0$$
The C-P equations fail, so
$$f(x) = 2x = 1$$

$$f(x) = 2x = 1$$

Problem 4.

Find the derivative and radius of convergence of the following.
(a)

$$f(z) = \sum_{n=0}^{\infty} nz^n$$

$$f'(z) = \frac{20}{u=4} n^2 z^{u-1}$$

lius
$$a_n/n = \lim_{n \to \infty} a_n/n = 1$$

so $\lim_{n \to \infty} |a_n|/n = 1$
 $\Rightarrow R = 1$

(b)
$$f(z) = \sum_{n=0}^{\infty} z^{(n^2)}$$

$$f'(2) = \sum_{u=1}^{\infty} (x^2)^{2u^2} u^2 2^{u^2-1}$$

$$sup |ak|^{1/K} = sup |^{1/K} = 1$$

$$K > h$$

Problem 5.

(a) Evaluate the line integral of $f(z) = e^{iz}$ on the line segment connecting -i and i. You may use any theorems that we learned, but state clearly what you are using.

In this case, the line integral of f is just the difference of F at the endpoint (by Fundamental Thun of Calandar)

ffdz = F(i) - F(-i) = -i(e-1-e1)

(b) Evaluate the line integral of of $f(z) = e^{iz}$ clockwise on the intersection of the circle of radius 1 and the right half-plane $\{z : Re(z) \ge 0\}$. You may use any theorems that we learned, but state clearly what you are using.

By the same argument as above, we have

$$\int_{C} f d\tau = F(-i) - F(i)$$

$$= i \left(e^{-1} - e^{-1} \right).$$

Problem 6.

Let f be an entire function, and assume that the second derivative satisfies |f''(z)| < 1 for all $z \in \mathbb{C}$. Show that for some constants $a, b, c \in \mathbb{C}$ we have $f(z) = az^2 + bz + c$ for all $z \in \mathbb{C}$.

Liouvilles theorem says that a bold cubic function is accustomt. If f is entire, then so is f", hence f"= coust, say 2a.

Let b = f'(o), then by (**, last pay): $f'(*) = \int f'(\omega) d\omega + f'(o)$ $f(o) = \int f'(\omega) d\omega + f'(o)$

= 202+6.

Similarly, let c = f(0), then $f(x) = \int_{0.173}^{1} f(x) dx + c = \alpha z^{2} + b z + c$