Math C31 Term test
October 30, 2004
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There are 6 problems on this exam. Do all problems, each is worth 20 points. Start with
the easier problems. This is a closed book exam. No calculators are allowed.
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Problem 1.
(a) Define: open subset of C
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(b) Define: a function f is analytic at a point 2.
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(c) Define: entire function. &») o \pﬁ
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(e) State the closed curve theou ‘m (the version for entire fihctions will do).
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(d) Define the line integral



Problem 2. Let A = C\ {0}. Prove that A is open.

Lk 2 eA') Hea DCr, x]) A
b tecus "\\x, W € D C:b\ ’%—l) Hwn |
x [F-w| 2Bl and o

,\y\\r WQ"L‘ Cvdzo\cz\uef L‘V ’

Wi+ vl 7 [ ©

7 plebowl2o.

go |\ l = O ) W O aweld (,U”é/‘\\.



Problem 3. Let v : R — R be a function with continuous derivative.
(a) Prove that f(z) := u(Re(2)) + 4u(Im(z)) has a complex derivative at z if z = (1 + 9)r,
where r is a real number.
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(b) Prove that if u(z) = z* then f is not an entire function. You may use any theorems we
learned, but state clearly what you use.
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Problem 4.
Find the derivative and radius of convergence of the following.
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Problem 5.
(a) Evaluate the line integral of f(z) = ¢** on the line segment connecting —i and 7. You
may use any theorems that we learned, but state clearly what you are using.
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(b) Evaluate the line integral of of f(z) = e** clockwise on the intersection of the circle

of radius 1 and the right half-plane {2 : Re(z) > 0}. You may use auy theorems that we
learned, but state clearly what you are using.
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Problem 6.
Let f be an entire function, and assume that the second derivative satisfies |f"(2)] <1 for
all z € C. Show that for some coustants a, b, ¢ € C we have f(z) = az*+bz+cforall z € C.
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