MATC34 Solutions to Assignment 6

1. Find the images of
(a) $\{z: 0<\arg (z)<\pi / 6\}$
(b) $D(0 ; 2)$
(c) $\{z: 0<\operatorname{Im}(z)<1\}$ under $z \mapsto 1 / z$.

Solution: Image under $f: z \mapsto 1 / z$ of
(a) $\{z: 0<\arg (z)<\pi / 6\}$
$=\left\{z r e^{i \theta}: 0<\theta<\pi / 6\right\}$ In this case $z^{-1}=r^{-1} e^{-i \theta}: 0<\theta<\pi / 6$ so image is the wedge $\{z:|z|>0,0>\arg (z)>-\pi / 6\}$
(b) $D(0 ; 2)$

Soln: $D(0 ; 2)=\left\{z=r e^{i \theta} \mid r<2\right\}$

$$
1 / z=1 / r e^{-i \theta}: 1 / r>1 / 2
$$

so image is $\{z:|z|>1 / 2\}$
(c) $\{z: 0<\operatorname{Im}(z)<1\}$

Soln: $\{z \mid 0<\operatorname{Im}(z)<1\}=\{z=x+i y \mid 0<y<1\}$

$$
\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{x-i y}{x^{2}+y^{2}}
$$

The line $z \in \mathbf{R}$ is sent to $\mathbf{R} \backslash\{\mathbf{0}\}$. (The point ∞ is sent to 0 .)
The line $z=x+i($ where $(\operatorname{Im})(\mathrm{z})=1)$ contains $i, 1+i,-1+i$, and is sent to the circline containing $1 / i, 1 /(1+i)=(1-i) / 2$ and $1 /(-1+i)=\frac{(-1-i)}{2}$. These three points are

$$
=-i, 1 / \sqrt{2} e^{-i \pi / 4}, 1 / \sqrt{2} e^{-3 i \pi / 4}
$$

This is the circle with centre $-i / 2$ and radius $1 / 2$ Under $f(z)=1 / z$, the point $i / 2$ is sent to $-2 i$. This point is outside the circle described above. So the strip $\{z: 0<\operatorname{Im}(z)<1\}$ is sent under $f(z)=1 / z$ to the region below the real axis and outside the circle $\{z:|z+i / 2|=1 / 2$.
2. Describe the image of $\{z: 0<\arg (z)<\pi / 2\}$ under $z \mapsto w=\frac{z-1}{z+1}$

Solution: We are looking for the image of $\{z: 0<\operatorname{Arg}(z)<\pi / 2\}$ under $z \mapsto f(z)=\frac{z-1}{z+1}$.
The first quadrant is bounded by
(a) the positive real axis
(b) the positive imaginary axis.

Image of positive real axis under f :

$$
\begin{gathered}
\left.\left\{\frac{t-1}{t+1}: t \in \mathbf{R}, t>0\right\}=1-2 /(t+1)\right\} \\
t+1 \geq 1
\end{gathered}
$$

implies

$$
(t+1)^{-1} \leq 1
$$

$0 \geq \frac{-2}{t+1} \geq-2$ so \mathbf{R}^{+}is mapped into the segment $[-1,1]$.
Image of positive imaginary axis: $\left\{\frac{i t-1}{i t+1}: t \in \mathbf{R}, \mathbf{t}>\mathbf{0}\right\}$ This is the segment of the circline containing $f(0), f(i), f(\infty)$.
$f(0)=-1, f(i)=\frac{i-1}{i+1}=\frac{\sqrt{2} e^{3 i \pi / 4}}{\sqrt{2} e^{i \pi / 4}}$

$$
f(\infty)=1
$$

A point in the interior of the sector is $z=1+i$.
Then $f(z)=\frac{1+i-1}{1+i-1}=\frac{i}{2+i}=\frac{i(2-i)}{4}=\frac{1 / 4+i}{2}$. This is in interior of semicircle. This means that the image of the first quadrant under f is the interior of the intersection of the unit disk with the upper half plane.
3. Describe the image of $\{z: \operatorname{Re}(z)>0\}$ under $z \mapsto w$ where $\frac{w-1}{w+1}=2 \frac{z-1}{z+1}$

Solution: We now must solve for w where $\frac{w-1}{w+1}=u$ and $u \in D(0 ; 2)$.
$w-1=u(w+1)$
$w(1-u)=u+1$

$$
w=\frac{1+u}{1=u}
$$

so we get the image of $D(0 ; 2)$ under f_{3}, where $f_{3}(u)=\frac{1+u}{1-u}$.

This is the region containing $f_{3}(1)=\infty$ and $f_{3}(-1)=0$ and bounded by $f_{3}(\{z:|z|=2\})$. This boundary is the circline containing $f_{3}(2)=$ $(1+2) /(1-2)=-3, f_{3}(-2)=1-2 /(1+2)=-1 / 3$ and $f_{3}(2 i)=$ $\frac{1+2 i}{1-2 i}=(1+2 i)^{2} / 5$

$$
\begin{aligned}
& =\frac{-3+4 i}{5} \\
f_{3}(-2 i) & =\frac{1-2 i}{1+2 i}=\frac{-3-4 i}{5}
\end{aligned}
$$

This circle has centre c, radius r where $r=|-3-c|=|-1 / 3-c|=$ $|(-3+4 i) / 5-c|$. The centre is on the real axis since the real axis is the line of points at the same distance from $(-3+4 i) / 5$ and its complex conjugage $(-3-4 i) / 5$. The centre is at the same distance from $-3=-9 / 3$ and $-1 / 3$. So $c=-5 / 3$ The radius is $r=|-3-c|=$ $|-9 / 3+5 / 3|=4 / 3$
The image is the region outside the circle.
If the centre is $c, c \in \mathbf{R}$ since the real axis is the line of points equidistant from $2 i-1$ and $-2 i-1$.
So $|2 i-1-c|=|(-1+2 i) / 5-c|$ So $(1+c)^{2}+4=(1 / 5+c)^{2}+4 / 25$ $1+2 c-1 / 25-2 / 5 c=4(-24) / 25$

$$
\begin{aligned}
& 8 c / 5=4(-24 / 25)-24 / 25 \\
& 8 / 5 c=-5 \cdot 24 / 25=-24 / 5
\end{aligned}
$$

so $c=3$. So the radius is $|2 i-1+3|=|2 i+2|=2 \sqrt{3}$

$$
0 \in D(0 ; 2)
$$

$f_{3}(0)=1$ and $|1-(-3)|=4>2 \sqrt{2}$. So the image $f_{3}(D(0 ; 2))$ is the region outside the circle: $\{z:|z+3|>2 \sqrt{2}\}$.
4. (a) Find Möbius transformations to map
$1, i, 0$ to $1, i,-1$ respectively
Soln: Möbius transformation $f(z)=\frac{a z+b}{c z+d}$

$$
f(1)=1, f(i)=i, f(0)=-1
$$

We have

$$
\begin{equation*}
\frac{a+b}{c+d}=1 \tag{1}
\end{equation*}
$$

or

$$
\begin{gather*}
a+b=c+d \\
\frac{a i+b}{c i+d}=i \tag{2}
\end{gather*}
$$

or

$$
\begin{gathered}
a i+b=-c+i d \\
b / d=-1
\end{gathered}
$$

or

$$
\begin{equation*}
b=-d \tag{3}
\end{equation*}
$$

So substituting (3) in (1) and 2

$$
\begin{gather*}
a+b=c-b \tag{4}\\
a i+b=-c-i b \tag{5}
\end{gather*}
$$

(4) is equivalent to

$$
\begin{equation*}
2 b=c-a \tag{6}
\end{equation*}
$$

(5) is equivalent to

$$
\begin{equation*}
(1+i) b=-c-i a \tag{7}
\end{equation*}
$$

$$
2 b=(-(1-i) c-i(1-i) a=(-1+i) c+(-1-i) a
$$

((7)

$$
\times(1-i)
$$

) so

$$
\begin{equation*}
c-a=(-1+i) c+(-1-i) a \tag{8}
\end{equation*}
$$

so

$$
(2-i) c=-i a
$$

so

$$
(2 i+1) c=a
$$

From (b),

$$
2 b=c-a=c-(2 i+1) c=-2 i c
$$

so $b=-i, c=i b$ and $a=(2 i+1) c=(-2+i) b$ and $d=-b$
So

$$
f(z)=\frac{(-2+i) b z+b}{i b z-b}
$$

Set $b=1$ so

$$
f(z)=\frac{(-2+i) z+1}{i z-1}
$$

(b) Find Möbius transformations to map $0,1, \infty$ to $\infty,-i, 1$ respectively Möbius transformation
Soln: $f(z)=\frac{a z+b}{c z+d}$ so that $f(0)=\infty$ and $f(1)=-i$ and $f(\infty)=1$.

$$
\begin{equation*}
b / d=\infty \tag{9}
\end{equation*}
$$

so $d=0$

$$
\begin{equation*}
(a+b) /(c+d)=-i \tag{10}
\end{equation*}
$$

so $a+b=-i c$ using equation (9).

$$
\begin{equation*}
a / c=1 \tag{11}
\end{equation*}
$$

so $a=c$ so $c+b=-i c$ so $b=(-1-i) c$

$$
f(z)=\frac{c z+(-1-i) c}{c z}=\frac{z+(-1-i)}{z} .
$$

Circlines whose images are straight lines:
If $f(z)=w=\frac{z+(-1-i)}{z}$

$$
\begin{gathered}
w z=z+(-1-i) \\
z(w-1)=-1-i \\
z=\frac{-1-i}{w-1}
\end{gathered}
$$

If w is in the line $\left\{w=a+t e^{i \theta}: t \in \mathbf{R}\right\}$ containing $a, a+b, a-b$, then the preimage curve $\{z\}$ is the circline containing

$$
\frac{-1-i}{a-1}, \frac{-1-i}{a+b-1}, \frac{-1-i}{a-b-1}
$$

5. Find the Möbius transformation mapping $0,1, \infty$ to $1,1+i, i$ respectively. Under this mapping what is the image of a circular arc through -1 and $-i$?
Soln:

$$
f(z)=\frac{a z+b}{c z+d}
$$

(a) $f(0)=1$ iff $b / d=1$ iff $b=d$
(b) $f(1)=1+i$ iff $\frac{a+b}{c+d}=1+i$ iff $a+b=(1+i) c+(1+i) d$
(c) $f(\infty)=i$ iff $a / c=i$ iff $a=i c$

From the first two equations in the list above,

$$
a+b=(1+i)(-i) a+(1+i) b
$$

$a(1+i-1)=i b$ iff $a=b=d$ iff $c=-i a$
So

$$
f(z)=\frac{a z+a}{-i a z+a}=\frac{z+1}{-i z+1}
$$

6. Möbius transformations mapping $\{z: \operatorname{Im}(z)>0\}$ onto $D(0 ; 1)$ and mapping imaginary axis onto real axis: $f(z)=\frac{a z+b}{c z+d}$
f must map real axis (boundary of $\{z: \operatorname{Im}(z)>0\}$ onto unit circle $\{z:|z|=1\}$
Use text, Example 8.14, Stage 4 (p. 103): $z \mapsto f(z)=\frac{z+i}{z-i}$ maps lower half plane to $D(0 ; 1)$ So $z \mapsto g(z)=\frac{-z+i}{-z-i}$ maps upper half plane to $D(0 ; 1)$. It also maps the imaginary axis $i \mathbf{R}$ to the real axis \mathbf{R}.
So our problem reduces to finding the Möbius transformations which map the upper half plane to itself and map $i \mathbf{R}$ to $i \mathbf{R}$. If $f(z)=\frac{a z+b}{c z+d}$ maps upper half plane to itself, it must map the real axis to itself:

$$
\begin{aligned}
\frac{a t+b}{c t+d} & =\frac{\bar{a} t+\bar{b}}{\bar{c} t+\bar{d}} \\
(a t+b)(\bar{c} t+\bar{d}) & =(c t+d)(\bar{a} t+\bar{b}) \\
a \bar{c} t^{2}+(b \bar{c}+a \bar{d}) t+b \bar{d} & =\bar{a} c t^{2}+(\bar{b} c+\bar{a} d) t+\bar{b} d
\end{aligned}
$$

7. (i) Find the image of $\{z: 0<\operatorname{Arg}(z)<\pi / 4\}$ under $z \mapsto i z^{4}$

Solution: If $f(z)=z^{4}$, then the sector $\{z: 0<\operatorname{Arg}(z)<\pi / 4\}$ maps to the upper half plane $(z: \operatorname{Im}(z)>0)$. Multiplying it by i maps to the left half plane (union of the second and third quadrants) $\{z: \operatorname{Re}(z)<$ $0\}$
(ii) Find the image of $\{z: 0<\operatorname{Re}(z)<1,0<\operatorname{Im}(z)<\pi / 2\}$ under $z \mapsto e^{z}$

Solution: We showed in class that $a<\operatorname{Re}<b$ maps under $f(z)=e^{z}$ to the ring $e^{a}<|z|<e^{b}$. We also showed that $c<\operatorname{Im}(z)<d$ maps under $f(z)=e^{z}$ to $c<\operatorname{Arg}(z)<d$. So the image is the intersection of the ring $1<|z|<e$ with the first quadrant $0<\operatorname{Arg}(z)<\pi / 2$.
8. Construct a conformal map onto $D(0 ; 1)$ for $\{z:-1<\operatorname{Re}(z)<1\}$

Solution: The map $f(z)=z+i$ sends the strip $x+i y:-1<y<1$ to $x+i y: 0<y<2$. The map $g(z)=(\pi / 2) z$ sends $0<y<2$ to $0<y<\pi$. The map $h(z)=e^{z}$ sends $0<y<\pi$ to the upper half plane. The map $j(z)=\frac{z-i}{z+i}$ sends the upper half plane to the unit disk (as discussed in class).

So the map we want is the composition $j \circ h \circ g \circ f$.
9. Check that each of the following functions is harmonic on the indicated set, and find a holomorphic function of which it is the real part.
(i) $\sin \left(x^{2}-y^{2}\right) e^{-2 x y}$

Soln:
Use the fact that
if $Z=X+i Y$ for real variables X and Y,

$$
\exp (Z)=e^{X}(\cos Y+i \sin Y)
$$

Also

$$
z^{2}=\left(x^{2}-y^{2}\right)+2 i x y=X+i Y
$$

where $X=x^{2}-y^{2}$ and $Y=2 x y$.. So our function is $\operatorname{Re}(-i \exp (Z))=u$ where $f=-i \exp \left(z^{2}\right)$. Then the harmonic conjugate is

$$
v=\operatorname{Im}(f)=\operatorname{Im}\left(-i \exp \left(z^{2}\right)=\operatorname{Im}\left(-i e^{x^{2}-y^{2}} \cos (2 x y)\right) .\right.
$$

(ii) $\log \left(x^{2}+y^{2}\right)^{3 / 2}$ (on the open first quadrant).

Soln:
If $u=\left(\ln \left(x^{2}+y^{2}\right)\right)^{a}$ for some real number a (here $\left.a=3 / 2\right)$ then

$$
u_{x}=a \frac{\partial}{\partial x} \ln \left(x^{2}+y^{2}\right)=\frac{a}{x^{2}+y^{2}}(2 x)
$$

SO

$$
\begin{aligned}
u_{x x} & =\frac{2 a}{x^{2}+y^{2}}-\frac{2 a x}{\left(x^{2}+y^{2}\right)^{2}}(2 x) \\
& =\frac{2 a}{x^{2}+y^{2}}\left(1-\frac{2 x^{2}}{x^{2}+y^{2}}\right) \\
u_{x x}+u_{y y} & =\frac{2 a}{x^{2}+y^{2}}\left(2-2 \frac{\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}\right)=0
\end{aligned}
$$

So u is harmonic.
Construct its harmonic conjugate v :
$u_{x}=v_{y}$
We saw above that

$$
u_{x}=\frac{2 x a}{x^{2}\left(1+z^{2}\right)}
$$

where $z=y / x$
So

$$
v=x \int \frac{2 x a}{x^{2}\left(1+z^{2}\right)} d z=\frac{2 x^{2} a}{x^{2}} \arctan (y / x)+h(x)
$$

Hence

$$
v_{x}=h^{\prime}(x)+2 a\left(\frac{-y}{x^{2}+y^{2}}\right.
$$

This must be equal to $-u_{y}$ which is

$$
\frac{-2 a y}{x^{2}+y^{2}}
$$

Hence $h^{\prime}(x)=0$ and $($

$$
v(x, y)=2 a \arctan (y / x)+\text { constant }
$$

gives $u+i v$ is a holomorphic function of z.

