University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

Problem Set \#5

Due date: Thursday, November 29, 2018 at the beginning of class
(1) Classify the behaviour at ∞ for each of the following functions (zero, pole, removable sing.ularity, essential singu aar.y). If the function has a a zero or pole, give its order): (i) $\cosh (z)$

Solution:

$\cosh (z)=\cosh (1 / w)$ where $w=1 / z$.

$$
\cosh (z)=\frac{1}{2} \sum_{n=0}^{\infty} \frac{w^{-2 n}}{(2 n)!}
$$

$w=0($ or $z=\infty)$ is an isolated essential singularity.
(ii) $\frac{z-1}{z+1}$

Solution:

$$
\frac{z-1}{z+1}=\frac{1-w}{1+w}
$$

$w=0$ is not a singular point. It is also not a zero.
(iii) $\frac{z}{z^{3}+i}$

Solution:

$$
\frac{z}{z^{3}+i}=\frac{1}{w\left(w^{-3}+i\right)}=\frac{w^{2}}{1+i w^{2}}
$$

$w=0$ is a zero of order w
(iv) $\frac{z^{3}+i}{z}$

Solution:

$$
\frac{z^{3}+i}{z}=\frac{1+i w^{2}}{w^{2}}
$$

$w=0$ is a pole of order 2
(v) $\frac{\sin z}{z^{2}}$

Solution:

$$
\frac{\sin z}{z^{2}}=w^{2} \sin (1 / w)=w^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} w^{-2 n+1}
$$

$w=0$ is an isolated essential singularity
(2) Find the residues at the poles of the function

$$
f(z)=\frac{1}{z^{3}\left(z^{2}+1\right)}
$$

Solution:
At $z=0$,

$$
\frac{1}{1+z^{2}}=1-z^{2}+z^{4}-\ldots
$$

so the coefficient of z^{-1} in this Laurent series is -1 . At $z=+i$,

$$
f(z)=\frac{1}{z^{2}(z+i)(z-i)}
$$

so the residue of f at i is $\frac{1}{i^{2}(i+i)}=-i / 2$. At $z=-i$, the residue of f at $-i$ is $\frac{1}{i^{2}(-i-i)}=$ $+i / 2$
(3) Find the residues at the poles of the function

$$
\frac{1-e^{i z}}{z^{2}}
$$

Solution:
The only pole is at $z=0$. Expanding $e^{i z}=1+i z+(i z)^{2} / 2+\ldots$ we find that the principal part of our function is i / z. Hence the residue at 0 is $-i$.
(4) Find the residues at the poles of the function

$$
\frac{1}{1-e^{z^{2}}}
$$

Solution:
We expand $1-e^{z^{2}}$ using the Taylor expansion for the exponential function

$$
e^{z^{2}}=1+z^{2}+z^{4} / 2+\ldots
$$

So $1-e^{z^{2}}=-z^{2}\left(1+B\left(z^{2}\right)\right)$ where $B\left(z^{2}\right)$ is a power series in z^{2} for which every term has a factor z^{2}.

Now we can invert $1 /\left(1-e^{z^{2}}\right)=\left(1 / z^{2}\right)\left(1 /\left(1+B\left(z^{2}\right)\right)\right.$
We can deduce from this (and the binomial theorem) that the principal part of $1 /(1-$ $e^{z^{2}}$) is $1 / z^{2}$. So there is a double pole at $z=0$, and the residue is 0 (because all the powers of z are even).
$z=0$ is the only singularity of this function (because it is the only value where the denominator is 0).
(5) Compute

$$
\int_{\gamma} \frac{1}{(z-1)^{2}\left(z^{2}+1\right)} d z
$$

where γ is a circle of radius 2 and centre 0 , traversed counterclockwise.
Solution: This function has poles at 1 and $\pm i$, all of which are inside this contour. Take $g(z)=\frac{1}{z^{2}+1}$, and

$$
g^{\prime}(z)=\frac{-2 z}{\left(z^{2}+1\right)^{2}}
$$

Then

$$
\operatorname{Res}(f(z) ; z=1)=g^{\prime}(1)=-2 / 4=-1 / 2
$$

The poles at $z= \pm i$ are simple poles so

$$
\begin{gathered}
\operatorname{Res}(f(z) ; i)=\frac{1}{(i-1)^{2}(i+i)}=\frac{1}{-2 i(2 i)}=\frac{1}{4} \\
\operatorname{Res}(f(z) ; z=-i)=\frac{1}{(-i-1)^{2}(-i-i)}=\frac{1}{(2 i)(-2 i)}=\frac{1}{4}
\end{gathered}
$$

So the integral is $2 \pi i\left(-\frac{1}{2}+\frac{1}{2}\right)=0$.
(6) Compute

$$
\int_{\gamma} \frac{1}{1+e^{z}} d z
$$

where γ is a circle of radius 8 and center 0 traversed counterclockwise.
Solution:
This function has poles when $e^{z}=-1=e^{i \pi}$ in other words $z=i \pi+2 \pi i n .2 \pi$ is approximately 6.28 while $3 \pi>9$. So the only poles inside γ are at $\pm i$.

Residues: $e^{z}=e^{i \pi} e^{z-i \pi}$ so $1+e^{z}=1-e^{z-i \pi}=-(z-i \pi)(1+$ higher order $)$.
So the residue at $i \pi$ is -1 .
Similarly at $-i \pi, e^{z}=e^{-i \pi} e^{z+i \pi}$ so $1+e^{z}=1-e^{z+i \pi}=-(z+i \pi)(1+$ higher order $)$. So the residue at $-i \pi$ is -1 . So the integral is $2 \pi i(-2)=-4 \pi i$.
(7) Evaluate the integral

$$
\int_{0}^{2 \pi}\left(\cos ^{4}(\theta)+\sin ^{4}(\theta)\right) d \theta
$$

by converting it into an integral around a circle of center 0 and radius 1 and applying the residue theorem.

Solution : The integral is

$$
\frac{1}{i} \int_{\gamma}\left[\left(\frac{z+z^{-1}}{2}\right)^{4}+\left(\frac{z-z^{-1}}{2 i}\right)^{4}\right] \frac{d z}{z}
$$

This is equal to

$$
\begin{gathered}
\frac{1}{16 i} \int_{\gamma}\left[\left(z^{2}+2+z^{-2}\right)^{2}+\left(z^{2}-2+z^{-2}\right)^{2}\right] \\
\quad=\frac{1}{16 i} \int_{\gamma}\left(2 z^{4}+2 z^{-4}+12\right) \frac{d z}{z}
\end{gathered}
$$

The only term that makes a nonzero contribution is $\int_{\gamma} \frac{12}{z} d z=24 \pi i$. So the answer is

$$
\frac{24 \pi i}{16 i}=\frac{3 \pi}{2}
$$

(8) Prove that

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x=\frac{\pi}{2 a b(a+b)}
$$

where $a, b>0$ and $a \neq b$.
Solution:
Let

$$
f(z)=\frac{1}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}
$$

Then what we want is $\frac{1}{2} \int_{\gamma} f(z) d z$ where γ is a semicircle in the upper half plane with center 0 and radius $R>a, b$. We need to check that the integral around the semicircular contour γ with radius R tends to 0 as $R \rightarrow \infty$. The integral around γ is

$$
\frac{1}{2} \int_{z:|z|=R} \frac{1}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)} d z
$$

The absolute value of this integral is

$$
\leq \frac{1}{\left(R^{2}-a^{2}\right)\left(R^{2}-b^{2}\right)}(2 \pi R) \leq \frac{1}{R^{3}}
$$

so it vanishes as $R \rightarrow \infty$.
To compute the integral around the contour, the poles are at $z=a i$ and $z=i b$, and

$$
f(z)=\frac{1}{(z+a i)(z-a i)(z+b i)(z-b i)}
$$

The residues are

$$
\operatorname{Res}(f(z) ; z=a i)=\frac{1}{2 a i}(a i+b i)(a i-b i)
$$

$$
=\frac{-1}{2 a i\left(a^{2}-b^{2}\right)}
$$

Similarly

$$
\operatorname{Res}(f(z) \mid z=b i)==\frac{-1}{2 b i\left(b^{2}-a^{2}\right)}
$$

So the sum of residues is

$$
\frac{i}{2\left(a^{2}-b^{2}\right)}\left[\frac{1}{a}-\frac{1}{b}\right]=\frac{-i}{2 a b(a+b)} .
$$

So the integral around the contour is

$$
\begin{gathered}
2 \pi i\left(\frac{-i}{2 a b(a+b)}\right)=\frac{\pi}{a b(a+b)} . \\
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{2 a b(a+b)} .
\end{gathered}
$$

(9) Prove

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{\left(x^{2}+a^{2}\right.} d x=\frac{\pi}{a} e^{-a}
$$

where $a>0$.
Solution: Consider

$$
\int_{\gamma} \frac{e^{i z} d z}{\left(z^{2}+a^{2}\right)}
$$

where γ is a semicircular contour in the upper half plane with center 0 and radius R.
The real part of this is the integral we want, as long as the integral around the semicircular contour tends to 0 as $R \rightarrow \infty$. The integral around the semicircle is

$$
\int_{0}^{\pi} \frac{e^{i(R \cos \theta+i R \sin \theta)} i R e^{i \theta} d \theta}{R^{2} e^{2 i \theta}+a^{2}}
$$

Its absolute value is less than or equal to

$$
\int_{0}^{\infty} \frac{e^{-R \sin \theta} R d \theta}{R^{2}-a^{2}} \leq \frac{\pi R}{R^{2}-a^{2}}
$$

This tends to 0 as $R \rightarrow \infty$. This proves the real part of the contour integral is equal to the integral we want.

The residues inside the contour occur at $z=i a$. If

$$
f(z)=\frac{e^{i z}}{z^{2}+a^{2}}=\frac{e^{i z}}{\left(z^{+} i a\right)(z-i a)}
$$

then

$$
\operatorname{Res}(f(z) \mid z=i a)=\frac{e^{i(i a)}}{2 a i}=\frac{e^{-a}}{2 a i}
$$

So the contour integral is $\frac{\pi e^{-a}}{a}$.
(10) By integrating $\left(1+z^{n}\right)^{-1}$ around a suitable sector of angle $\frac{2 \pi}{n}$, prove that, for $n=$ $2,3, \ldots$,

$$
\int_{0}^{\infty} \frac{1}{1+x^{n}} d x=\frac{\pi}{n \sin (\pi / n)}
$$

Solution: Let $f(z)=\frac{1}{1+z^{n}}$. The integral equals

$$
\int_{0}^{R} \frac{d x}{1+x^{n}}-e^{2 \pi i / n} \int_{0}^{R} \frac{d x}{1+x^{n}}+\int_{0}^{2 \pi / n} \frac{R i e^{i \theta} d \theta}{1+R^{n} e^{-n i \theta}} d \theta
$$

Here the first term is an integral over $z=x \in[0, R]$,
the second is an integral over $z=x e^{2 \pi i / n}, x \in[0, R]$, and the third is an integral over $z=R e^{i \theta}, 0 \leq \theta \leq 2 \pi / n$.

The third integral tends to 0 as $R \rightarrow \infty$ (it is bounded by $R /\left(R^{n}-1\right)(2 \pi / n)$, which tends to 0 as $R \rightarrow \infty$, since $n \geq 2$. The integral equals

$$
\int_{0}^{2 \pi / n} \operatorname{Ri}^{i \theta} d \theta\left(1+R^{n} e^{-i n \theta}\right)^{-1}
$$

The third integral tends to 0 as $R \rightarrow \infty$, because it is bounded by $\frac{R}{R^{n}-1} \frac{2 \pi}{n}$ and $n \geq 2$. This integral equals

$$
\left(1-e^{2 \pi i / n}\right) \int_{0}-{ }^{R}\left(1+x^{n}\right)^{-1} d x
$$

The poles occur at z where $z^{n}=-1=e^{i \pi}$, in other words where $z=e^{i \pi / n} e^{2 \pi i m / n}$ for some integer m. The only pole occurring inside this sector is $m=0$. The residue is obtained as follows. Let $w=e^{i \pi / n}$.

$$
z^{n}+1=(z-w) \prod_{m=1}^{n-1}\left(z-w e^{2 \pi i m / n}\right)
$$

So the residue is

$$
\frac{1}{\prod_{m=1}^{n-1}\left(w-w e^{2 \pi i m / n}\right)}=\frac{1}{a w^{n-1} \prod_{m=1}^{n-1}\left(1-e^{2 \pi i m / n}\right)}
$$

Thus we see that the residue is

$$
\frac{w}{\prod_{m=1}^{n-1}\left(1-e^{2 \pi i m / n}\right)}
$$

Now

$$
\prod_{m=1}^{n-1}\left(1-e^{2 \pi i m / n}\right)=\left.\frac{1-x^{n}}{1-x}\right|_{x=1}
$$

since

$$
x^{n}-1=(x-1) \prod_{m=1}^{n-1}\left(x-e^{2 \pi i m / n}\right)
$$

But

$$
\frac{1-x^{n}}{1-x}=1+x+\cdots+x^{n-1}
$$

So

$$
\frac{1-x^{n}}{1-x}=1+x+\cdots+\left.x^{n-1}\right|_{x=1}=n
$$

Hence we find that the residue is $-\frac{w}{n}$. So we have

$$
\left(1-w^{2}\right) \int_{0}^{\infty}\left(1+x^{n}\right)^{-1} d x=-\frac{2 \pi i w}{n}
$$

So

$$
\begin{aligned}
\int_{0}^{\infty}\left(1+x^{n}\right)^{-1} d x & =-\frac{2 \pi i w}{n\left(1-w^{2}\right)} \\
\frac{2 \pi i}{n\left(w-w^{-1}\right)} & =\frac{\pi}{n \sin \pi / n}
\end{aligned}
$$

Likewise

$$
\int_{\Gamma} \frac{z}{1+z^{n}} d z=\int_{0}^{R} \frac{x d x}{1+x^{n}}-\int_{0}^{R} \frac{e^{2 \pi i / n} x}{1+x^{n}} d x+\int_{0}^{\pi}\left(\operatorname{Rie}^{i \theta} d \theta\right)\left(\operatorname{Re}^{i \theta}\left(1+R^{n} e^{-i n \theta}\right)^{-1}\right.
$$

The integral over the circular arc is bounded by

$$
\frac{R^{2}}{R^{n}-1}
$$

This is less than

$$
K R^{2-n}
$$

for a suitable constant K.
So since $n \geq 3$, this quantity approaches 0 as $R \rightarrow \infty$.
The residue at $w=e^{i \pi / n}$ is

$$
\begin{gathered}
\frac{e^{i \pi / n}}{\prod_{m=1}^{n-1}\left(w-w e^{2 \pi i m / n}\right)}=\frac{w}{w^{n-1} \prod_{m=1}^{n-1}\left(1-e^{2 \pi i m / n}\right)} \\
=\frac{-w^{2}}{\prod_{m=1}^{n-1}\left(1-e^{2 \pi i m / n}\right)}=-w^{2} / n
\end{gathered}
$$

Thus we have

$$
\left(1-e^{4 \pi i / n}\right) \int_{0}^{\infty} \frac{x d x}{1+x^{n}}=2 \pi i\left(-\frac{e^{2 \pi i / n}}{n}\right)
$$

or

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x d x}{1+x^{n}} & =-\frac{2 \pi i}{n\left(e^{-2 \pi i / n}-e^{2 \pi i / n}\right)} \\
& =\frac{\pi}{n \sin (2 \pi / n)}
\end{aligned}
$$

