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Problem Set #5

Due date: Thursday, November 29, 2018 at the beginning of class

(1) Classify the behaviour at ∞ for each of the following functions (zero, pole, removable
sing.ularity, essential singu aar.y). If the function has a a zero or pole, give its order):
(i) cosh(z)

Solution:
cosh(z) = cosh(1/w) where w = 1/z.

cosh(z) =
1

2

∞∑
n=0

w−2n

(2n)!

w = 0 (or z =∞) is an isolated essential singularity.

(ii) z−1
z+1

Solution:

z − 1

z + 1
=

1− w
1 + w

w = 0 is not a singular point. It is also not a zero.
(iii) z

z3+i

Solution:
z

z3 + i
=

1

w(w−3 + i)
=

w2

1 + iw2

w = 0 is a zero of order w

(iv) z3+i
z

Solution:

z3 + i

z
=

1 + iw2

w2

w = 0 is a pole of order 2
(v) sin z

z2

Solution:
1



2

sin z

z2
= w2 sin(1/w) = w2

∞∑
n=0

(−1)n

(2n+ 1)!
w−2n+1

w = 0 is an isolated essential singularity

(2) Find the residues at the poles of the function

f(z) =
1

z3(z2 + 1)

Solution:
At z = 0,

1

1 + z2
= 1− z2 + z4 − . . .

so the coefficient of z−1 in this Laurent series is −1. At z = +i,

f(z) =
1

z2(z + i)(z − i)
so the residue of f at i is 1

i2(i+i)
= −i/2. At z = −i, the residue of f at −i is 1

i2(−i−i) =

+i/2
(3) Find the residues at the poles of the function

1− eiz

z2

Solution:
The only pole is at z = 0. Expanding eiz = 1 + iz + (iz)2/2 + . . . we find that the

principal part of our function is i/z. Hence the residue at 0 is −i.
(4) Find the residues at the poles of the function

1

1− ez2

Solution:
We expand 1− ez2 using the Taylor expansion for the exponential function

ez
2

= 1 + z2 + z4/2 + . . .

So 1− ez2 = −z2(1 +B(z2)) where B(z2) is a power series in z2 for which every term
has a factor z2.

Now we can invert 1/(1− ez2) = (1/z2)(1/(1 +B(z2))
We can deduce from this (and the binomial theorem) that the principal part of 1/(1−

ez
2
) is 1/z2. So there is a double pole at z = 0, and the residue is 0 (because all the

powers of z are even).
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z = 0 is the only singularity of this function (because it is the only value where the
denominator is 0).

(5) Compute ∫
γ

1

(z − 1)2(z2 + 1)
dz

where γ is a circle of radius 2 and centre 0, traversed counterclockwise.
Solution: This function has poles at 1 and ±i, all of which are inside this contour.

Take g(z) = 1
z2+1

, and

g′(z) =
−2z

(z2 + 1)2
.

Then

Res(f(z); z = 1) = g′(1) = −2/4 = −1/2.

The poles at z = ±i are simple poles so

Res(f(z); i) =
1

(i− 1)2(i+ i)
=

1

−2i(2i)
=

1

4
.

Res(f(z); z = −i) =
1

(−i− 1)2(−i− i)
=

1

(2i)(−2i)
=

1

4
.

So the integral is 2πi(−1
2

+ 1
2
) = 0.

(6) Compute ∫
γ

1

1 + ez
dz

where γ is a circle of radius 8 and center 0 traversed counterclockwise.
Solution:
This function has poles when ez = −1 = eiπ in other words z = iπ + 2πin. 2π is

approximately 6.28 while 3π > 9. So the only poles inside γ are at ±i.
Residues: ez = eiπez−iπ so 1 + ez = 1− ez−iπ = −(z − iπ)(1+ higher order).
So the residue at iπ is −1.
Similarly at −iπ, ez = e−iπez+iπ so 1 + ez = 1− ez+iπ = −(z + iπ)(1+ higher order).

So the residue at −iπ is −1. So the integral is 2πi(−2) = −4πi.
(7) Evaluate the integral ∫ 2π

0

(cos4(θ) + sin4(θ))dθ.

by converting it into an integral around a circle of center 0 and radius 1 and applying
the residue theorem.
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Solution : The integral is

1

i

∫
γ

[(
z + z−1

2

)4

+

(
z − z−1

2i

)4
]
dz

z
.

This is equal to

1

16i

∫
γ

[
(z2 + 2 + z−2)2 + (z2 − 2 + z−2)2

]
=

1

16i

∫
γ

(2z4 + 2z−4 + 12)
dz

z

The only term that makes a nonzero contribution is
∫
γ

12
z
dz = 24πi. So the answer is

24πi

16i
=

3π

2
.

(8) Prove that ∫ ∞
0

1

(x2 + a2)(x2 + b2)
dx =

π

2ab(a+ b)

where a, b > 0 and a 6= b.
Solution:
Let

f(z) =
1

(z2 + a2)(z2 + b2)
.

Then what we want is 1
2

∫
γ
f(z)dz where γ is a semicircle in the upper half plane with

center 0 and radius R > a, b. We need to check that the integral around the semicircular
contour γ with radius R tends to 0 as R→∞. The integral around γ is

1

2

∫
z:|z|=R

1

(z2 + a2)(z2 + b2)
dz.

The absolute value of this integral is

≤ 1

(R2 − a2)(R2 − b2)
(2πR) ≤ 1

R3

so it vanishes as R→∞.
To compute the integral around the contour, the poles are at z = ai and z = ib, and

f(z) =
1

(z + ai)(z − ai)(z + bi)(z − bi)
The residues are

Res(f(z); z = ai) =
1

2ai
(ai+ bi)(ai− bi)
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=
−1

2ai(a2 − b2)

Similarly

Res(f(z)|z = bi) ==
−1

2bi(b2 − a2)

So the sum of residues is

i

2(a2 − b2)

[
1

a
− 1

b

]
=

−i
2ab(a+ b)

.

So the integral around the contour is

2πi(
−i

2ab(a+ b)
) =

π

ab(a+ b)
.

∫ ∞
0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a+ b)
.

(9) Prove ∫ ∞
−∞

cos(x)

(x2 + a2
dx =

π

a
e−a

where a > 0.
Solution: Consider ∫

γ

eizdz

(z2 + a2)

where γ is a semicircular contour in the upper half plane with center 0 and radius R.
The real part of this is the integral we want, as long as the integral around the

semicircular contour tends to 0 as R→∞. The integral around the semicircle is∫ π

0

ei(R cos θ+iR sin θ)iReiθdθ

R2e2iθ + a2
.

Its absolute value is less than or equal to∫ ∞
0

e−R sin θRdθ

R2 − a2
≤ πR

R2 − a2
.

This tends to 0 as R→∞. This proves the real part of the contour integral is equal to
the integral we want.

The residues inside the contour occur at z = ia. If

f(z) =
eiz

z2 + a2
=

eiz

(z+ia)(z − ia)
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then

Res(f(z)|z = ia) =
ei(ia)

2ai
=
e−a

2ai

So the contour integral is πe−a

a
.

(10) By integrating (1 + zn)−1 around a suitable sector of angle 2π
n

, prove that, for n =
2, 3, . . . , ∫ ∞

0

1

1 + xn
dx =

π

n sin(π/n)
.

Solution: Let f(z) = 1
1+zn

. The integral equals∫ R

0

dx

1 + xn
− e2πi/n

∫ R

0

dx

1 + xn
+

∫ 2π/n

0

Rieiθdθ

1 +Rne−niθ
dθ

Here the first term is an integral over z = x ∈ [0, R],
the second is an integral over z = xe2πi/n, x ∈ [0, R], and the third is an integral over

z = Reiθ, 0 ≤ θ ≤ 2π/n.
The third integral tends to 0 as R→∞ (it is bounded by R/(Rn − 1)(2π/n), which

tends to 0 as R→∞, since n ≥ 2. The integral equals∫ 2π/n

0

Rieiθdθ(1 +Rne−inθ)−1.

The third integral tends to 0 as R→∞, because it is bounded by R
Rn−1

2π
n

and n ≥ 2.
This integral equals

(1− e2πi/n)

∫
0

−R(1 + xn)−1dx

The poles occur at z where zn = −1 = eiπ, in other words where z = eiπ/ne2πim/n for
some integer m. The only pole occurring inside this sector is m = 0. The residue is
obtained as follows. Let w = eiπ/n.

zn + 1 = (z − w)
n−1∏
m=1

(z − we2πim/n).

So the residue is
1∏n−1

m=1(w − we2πim/n)
=

1

awn−1
∏n−1

m=1(1− e2πim/n)
.

Thus we see that the residue is
w∏n−1

m=1(1− e2πim/n)
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Now
n−1∏
m=1

(1− e2πim/n) =
1− xn

1− x
|x=1

since

xn − 1 = (x− 1)
n−1∏
m=1

(x− e2πim/n).

But
1− xn

1− x
= 1 + x+ · · ·+ xn−1

So
1− xn

1− x
= 1 + x+ · · ·+ xn−1|x=1 = n.

Hence we find that the residue is −w
n
. So we have

(1− w2)

∫ ∞
0

(1 + xn)−1dx = −2πiw

n

So ∫ ∞
0

(1 + xn)−1dx = − 2πiw

n(1− w2)
.

2πi

n(w − w−1)
=

π

n sin π/n

Likewise∫
Γ

z

1 + zn
dz =

∫ R

0

xdx

1 + xn
−
∫ R

0

e2πi/nx

1 + xn
dx+

∫ π

0

(Rieiθdθ)(Reiθ(1 +Rne−inθ)−1

The integral over the circular arc is bounded by

R2

Rn − 1

This is less than
KR2−n

for a suitable constant K.
So since n ≥ 3, this quantity approaches 0 as R→∞.
The residue at w = eiπ/n is

eiπ/n∏n−1
m=1(w − we2πim/n)

=
w

wn−1
∏n−1

m=1(1− e2πim/n)
.

=
−w2∏n−1

m=1(1− e2πim/n)
= −w2/n.
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Thus we have

(1− e4πi/n)

∫ ∞
0

xdx

1 + xn
= 2πi(−e

2πi/n

n
)

or ∫ ∞
0

xdx

1 + xn
= − 2πi

n(e−2πi/n − e2πi/n)

=
π

n sin(2π/n)
.


