University of Toronto at Scarborough

Department of Computer and Mathematical Sciences

MAT C34F
2018/19

Problem Set \#4

Due date: Thursday, November 15, 2018 at the beginning of class
(1) Find the Laurent expansion of

$$
\left(z^{2}-1\right)^{-2}
$$

valid
(a) for $0<|z-1|<2$

Solution: For $0<|z-1|<2$,
$\left.\frac{1}{\left(z^{2}-1\right)^{2}}=\frac{1}{(z-1)^{2}((z-1)+2)^{2}}=\frac{1}{4(z-1)^{2}}\left(1+\left(\frac{z-1}{2}\right)\right)\right)^{-2}$
Put $w=\frac{z=1}{2}$.
Then, since $\frac{1}{1+w}=\sum_{n=0}^{\infty}(-1)^{n} w^{n}$ for $|w|<1$,
$\frac{d}{d w}(1+w)^{-1}=-(1+w)^{-2}=\sum_{n=1}^{\infty}(-1)^{n} n w^{n-1}$
So

$$
\frac{1}{\left(1+\frac{z-1}{2}\right)^{2}}=\sum_{n=1}^{\infty}(-1)^{n-1} n\left(\frac{z-1}{2}\right)^{n-1}
$$

and

$$
\frac{1}{4(z-1)^{2}}\left(1+\frac{z-1}{2}\right)^{2}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n(z-1)^{n-3}}{2^{n+1}}
$$

(b) for $|z+1|>2$

Solution: In this case

$$
\begin{aligned}
&\left(z^{2}-1\right)^{-2}= \frac{1}{(z+1)^{2}(z+1-2)^{2}}=\frac{1}{(z+1)^{4}\left(1-\frac{2}{z+1}\right)^{2}} \\
&= \frac{1}{(z+1)^{4}} \sum_{n=1}^{\infty}(-1)^{n} n\left(\frac{2}{z+1}\right)^{n} \\
& \quad=-\sum_{n=1}^{\infty} \frac{2^{n-1}}{(z+1)^{n+3}}
\end{aligned}
$$

(2) Find the principal part of the Laurent expansion of $\left(e^{z}-1\right)^{-2}$ around 0 .

Solution:

$$
\begin{gathered}
e^{z}-1=\sum_{n=1}^{\infty} \frac{z^{n}}{n!}=z\left(1+z / 2+z^{2} / 3!+\ldots\right) \\
=z(1+A(z))
\end{gathered}
$$

where

$$
A(z)=\sum_{n=2}^{\infty} \frac{z^{n-1}}{n!}
$$

So

$$
\left(e^{z}-1\right)^{-2}=\frac{1}{z^{2}}\left(\frac{1}{1+A(z)}\right)^{2}
$$

and

$$
\frac{1}{1+A(z)}=1-A(z)+A(z)^{2}-\ldots
$$

so

$$
\left(\frac{1}{1+A(z)}\right)^{2}=\left(\frac{1}{1+w}\right)^{2}
$$

where $w=A(z)$
$=-\frac{d}{d w} \frac{1}{1+w}=-\frac{d}{d w} \sum_{n=0}^{\infty}(-1)^{n} w^{n}=\sum_{n=1}^{\infty}(-1)^{n-1} n w^{n-1}=1-2 A(z)+O\left(z^{2}\right)$
So

$$
\left(e^{z}-1\right)^{-2}=\frac{1}{z^{2}}\left(1-2(z / 2)+O\left(z^{2}\right)\right)
$$

(We only need to include the $z / 2$ term in $A(z)$, since all other terms in $A(z)$ are of order z^{2} or higher, and likewise all terms in $A(z)^{m}$ for $m \geq 2$.)

So the principal part of $\left(e^{z}-1\right)^{-2}$ is

$$
\frac{1}{z^{2}}(1-z)=\frac{1}{z^{2}}-\frac{1}{z}
$$

(3) Find the principal part of $\frac{e^{z}-1}{e^{z}+1}$ around $a=i \pi$.

Solution:

$$
\begin{gathered}
\frac{e^{z}-1}{e^{z}+1}=1-\frac{2}{e^{z}+1} \\
e^{z}=e^{(z-i \pi)} e^{i \pi}=-e^{z-i \pi}
\end{gathered}
$$

Put $w=z-i \pi$.
So

$$
1-e^{w}=-\sum_{n=1}^{\infty} w^{n} / n!=-w(1+A(w))
$$

where $A(w)$ is as defined in question 2. Hence

$$
\begin{gathered}
\frac{1}{1-e^{w}}=-\frac{1}{w(1+A(w))} \\
=-\frac{1}{w}\left(1-A(w)+A(w)^{2}-\ldots\right)
\end{gathered}
$$

So the principal part of this expression is the principal part of $-\frac{2}{1-e^{w}}$ which equals $\frac{2}{w}=\frac{2}{z-i \pi}$.
(4) Locate and classify the singularities of

$$
f(z)=\frac{e^{i z}}{\left(z^{2}+z+1\right)^{2}}
$$

Solution:
f is singular when $z^{2}+z+1=0$, in other words when $z=w$ or $z=\bar{w}$, where $w=e^{2 \pi i / 3}$.
$e^{i z} \neq 0$ when $z=w$ or $z=\bar{w}$. So f has a pole of order 2 at w and a pole of order 2 at \bar{w}. couLocate and classify the singularities of

$$
f(z)=\frac{z \sin z}{\cos (z)-1}
$$

Solution:
f has a singularity when $\cos (z)=1$, or equivalently when $z=2 \pi n$ for n an integer.

$$
\cos (z)=\cos (z-2 n \pi)
$$

$$
\cos (z-2 n \pi)-1=\sum_{n=1}^{\infty}(-1)^{n} \frac{(z-2 n \pi)^{2 n}}{(2 n)^{!}}
$$

$=-(z-2 n \pi)^{2} / 2+$ higher order terms.

$$
\sin (z-2 n \pi)=(z-2 n \pi)-(z-2 n \pi)^{3} / 3!+\ldots
$$

$\sin (z-2 n \pi)$ has a simple zero at $z=2 n \pi$. So when $z=0, f$ has a removable singularity.

When $z=2 n \pi(n \neq 0), f$ has a simple pole.
(5) Locate and classify the singularities of $f(z)=\frac{\cos \pi z}{(z-1) \sin \pi z}$

Solution:
f is singular when $z=1$ or $\sin \pi z=0$. When $z=1, \cos \pi z \neq$ 0 but $\sin \pi z=0$. Hence $\sin \pi z$ has a zero of order 1 at $z=1$ since $\sin \pi z=-\sin \pi(z-1)$ and $\sin (w)=w-w^{3} / 3!+\ldots \mathrm{g}$
where each term in the Taylor expansion of $\sin (w)$ has at least one factor of w.

Hence $\frac{1}{\sin \pi z}$ has a pole of order 1 at $z=1$, and $\frac{\cos \pi z}{(z-1) \sin \pi z}$ has a pole of order 2 at $z=1$.

When n is an integer, $\sin \pi z$ has a zero of order 1 at $z=n$.
When $z=n, \cos \pi z \neq 0$. So f has a pole of order 1 at $z=n$ when $n \neq 1$.
(6) Locate and classify the singularities of

$$
f(z)=\frac{z \sin z}{\cos (z)-1}
$$

Solution:
f has a singularity when $\cos (z)=1$, or equivalently when $z=2 \pi n$ for n an integer.

$$
\begin{aligned}
\cos (z) & =\cos (z-2 \pi n) \\
\cos (z-2 \pi n)-1 & =\sum_{m=1}^{\infty}(-1)^{m} \frac{(z-2 \pi n)^{2 m}}{(2 m)!}
\end{aligned}
$$

This equals $-(z-2 \pi n)^{2} / 2+$ higher order terms.

$$
\sin (z-2 \pi n)=(z-2 \pi n)-(z-2 \pi n)^{3} / 3!+\ldots
$$

The function $\sin (z-2 n \pi)$ has a zero of order 1 at $z=2 \pi n$. So when $z=0, f$ has a removable singularity.

When $z=2 \pi n, f$ has a pole of order 1 .
(7) Locate and classify the singularities, including singularities at ∞, of $f(z)=\tan ^{2}(z)$.

Solution:

$$
f(z)=\frac{\sin ^{2}(z)}{\cos ^{2}(z)}
$$

f is singular when $\cos (z)=0$ or equivalently $z=\pi / 2+n \pi$.
At these values, $\sin (z) \neq 0$ and $\cos (z)$ has a simple zero since $\cos (z)=\sin (\pi / 2-z)$.

So f has a pole of order 2 at $z=\pi / 2+n \pi$.
Behaviour at $z=\infty$: Set $z=1 / w$.
Define

$$
f(z)=\tilde{f}(w)=\frac{\sin ^{2}(1 / w)}{\cos ^{2}(1 / w)}
$$

In any neighbourhood of $w=0$ there are infinitely many values of w where $\cos (1 / w)=0$ and $\sin (1 / w) \neq 0$. Thus $z=\infty$ is an essential singularity of f.
(8) Locate and classify the singularities (including singularities at $\infty)$ of $f(z)=\cosh ^{2}(1 / z)$.

Solution: f is not singular unless $z=0$ or $z=\infty$.
At $z=0$ there is an isolated essential singularity because
$\cosh ^{2}(w)=\left(e^{w}+e^{-w}\right)^{2}=e^{2 w}+e^{-2 w}+2=\sum_{n=0}^{\infty} 2\left(\sum_{n=0}^{\infty} w^{2 n} /(2 n)!+2\right.$
so

$$
\cosh ^{2}(1 / z)=2 \sum_{n=0}^{\infty} z^{-2 n} /(2 n)!+2
$$

This has infinitely many negative terms, so an isolated essential singularity. at 0 .

At $z=\infty$, put $z=1 / w$ wo w is in a neighbourhood of 0 .

$$
f(z)=\cosh ^{2}(w)
$$

so f is smooth at $\infty($ and $f(w) \neq 0$ when $w=0$

