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(1) Evaluate
∫

Γ

zdz

(z + 2)(z − 1)

where Γ is the circle |z| = 4, clockwise.

Solution:

Note that

1

(z + 2)(z − 1)
=

A

z + 2
+

B

z − 1
=

A(z − 1) + B(z + 2)

(z + 2)(z − 1)

This means
A = −B

and
−A+ 2B = 1 = −3A

so

A = −1

3
.

So our integral is

1

3

∫

Γ

zdz

(

− 1

z + 2
+

1

z − 1

)

The integral is

1

3

∫

Γ

(

−(z + 2)− 2

z + 2
+

(z − 1) + 1

z − 1

)

dz

=
2

3

∫

Γ

dz

z + 2
+

1

3

∫

Γ

dz

z − 1
.

By Cauchy’s integral formula, this is
(

2

3
(2πi) +

1

3
(2πi)

)

(−1)

The minus sign is because the integral is clockwise. If it had
been counterclockwise, the answer would be +2πi.

= −2πi.
1



2

(2) (a) Evaluate
∫

Γ+

2z2 − z + 1

(z − 1)2(z + 1)

where Γ+ is

Γ+(t) = 1 + e−it, 0 ≤ t ≤ 2π

Γ+ is a circle with radius 1 and center 1, clockwise.

Solution:

Let

f(z) =
2z2 − z + 1

(z − 1)2(z + 1)

We use (partial fractions)

1

(z − 1)2(z + 1)
=

Az + B

(z − 1)2
+

C

(z + 1)

=
(Az + B)(z + 1) + C(z − 1)2

(z − 1)2(z + 1)

=
(A+ C)z2 + (A+ B − 2C)z +B + C

(z − 1)2(z + 1)
It follows that

A = −C,

A+ B − 2C = 0,

B + C = 1

Solving, we find
3C − B

3C + C = 1

C =
1

4
Hence

1

(z − 1)2(z + 1)
=

−1

4
z + 3

4

(z − 1)2
+

1

4(z + 1)

=
−1

4
(z − 1)− 1

4
+ 3

4

(z − 1)2
+

1

4(z + 1)

= − 1

4(z − 1)
+

1

2(z − 1)2
+

1

4(z + 1)
.
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So
∫

Γ+

f(z)dz) = −1

4
(−1)

∫

Γ

dz

z − 1

(the minus sign is because the integral is clockwise)

=
1

4
(2πi) = πi/2

.
This is because

∫

Γ+

dz

(z − 1)2
= 0

by our earlier results about the integral
∫

z:|z|=1

dz

zn
= 0

unless n = 1.
(b) Evaluate

∫

Γ
−

2z2 − z + 1

(z − 1)2(z + 1)

Γ−(t) = −1 + eit, 2π < t < 4π

(anticlockwise) Γ + − is a circle with radius 1 and center −1,
anticlockwise.
Solution: By similar reasoning

∫

Γ
−

f(z)dz =

∫

Γ
−

dz

4(z + 1)
=

1

4
(2πi) = πi/2.

(3) Compute
∫

|z|=2

dz

z2 + z + 1

Solution:

Let γ be the oriented curve {z||z| = 2} oriented counterclock-
wise.

∫

γ

dz

z2 + z + 1
=

∫

γ

dz

(z − a+)(z − a−)

where
z2 + z + 1 = (z − a+)(z − a−)
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so

a± = −1

2
±

√
3

2
i = e±2πi/3.

Both a+ and a− are inside γ.
Let γ+ be semicircle in the upper half plane with center 0

and radius 2. Let γ− be a semicircle in the lower half plane
with center 0 and radius 2. Let both γ+ and γ− be oriented
counterclockwise.
The integral of f around γ is the sum of the integral around

γ+ and the integral around γ and [2,−2]. (The two integrals
over the oriented line segment [−2, 2] in the real axis sum to
zero, because these segments have opposite orientations.)
By the Cauchy integral formula,

∫

γ

f(z)dz

z − a+
= 2πif+(a+)

(where f+(z) =
1

z−a
−

)

= 2πi
1

a+ − a−
=

2πi√
3i
.

Similarly
∫

γ
−

f−(z)dz

z − a−
= 2πif−(a−)

(here we have f−(z) =
1

z−a+
which is holomorphic inside γ−).

Hence by Cauchy integral formula,
∫

γ
−

f−(z) = 2πif−(a−) = 2πi
1

(a− − a+)
3i = 2πi(

1

−
√
3i
.

So
∫

γ

f(z)dz = 0,

since this is the sum of
∫

γ+

f+(z)dz

z − a+
+

∫

γ
−

f−(z)dz

z − a−
.

(4) Compute
∫

|z|=2

sin(z)dz

z2 + 1
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Solution:
∫

|z|=2

sin(z)dz

z2 + 1
=

∫

|z|=2

sin(z)dz()i/2)(
1

z + i
− 1

z − i

By the Cauchy integral formula,
∫

|z|=2

sin(z)dz

z + i
= 2πi sin(−i)

and
∫

|z|=2

sin(z)dz

z − i
= 2πi sin(i).

So the integral is

(i/2)(2πi)(sin(−i)− sin(i)) = 2π sin(i) = πi(e− e−1)

using

sin(z) =
eiz − e−iz

2i
.

(5) Let f(z) = 1

z+1
. Find an expansion

f(z) =
∞
∑

n=0

cn(z − i)n

which is valid in a disk with center i and radius r.
Solution:

f(z) =
1

z + 1
=

1

(z − i) + (1 + i)
=

1

(1 + i)(1 + z−i
1+i

=
1

1 + i

∞
∑

n=0

(−1)n(
z − i

1 + i
)n.

This expansion is valid when | z−i
1+i

| < 1, in other words when

|z − i| < |1 + i| =
√
2. So the disc radius is r <

√
2.

(6) Suppose f is a function which is holomorphic everywhere on
the complex plane and satisfies

f(z + 1) = f(z)

f(z + i) = f(z)

for all z. Prove that f is constant.
Solution: Any holomorphic function satisfying these condi-
tions is bounded, because there is M for which |f(z)| ≤ M for
all z = x + iy where 0 ≤ x ≤ 2π and 0 ≤ y ≤ 2π. This is true
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because a continuous function on a compact set is bounded.
Then |f(z)| ≤ M for all z in the complex plane, since for all z
there is some w = a + ib with 0 ≤ a ≤ 2π and 0 ≤ b ≤ 2π and
some integers m,n such that z = w +m+ ni. So f(z) = f(w),
so |f(z)| = |f(w)| ≤ M. Thus f is a bounded function which is
holomorphic everywhere on the complex plane. By Liouville’s
theorem, f must be constant.

(7) Is there a holomorphic function with f(1/n) = 1 when n is
even) and f(1/n) = −1 when n is odd. ? If so, exhibit the
function. If not, give a proof.
Solution: Since 0 is a limit point of {1/n, n even }, any such
function must equal 1 everywhere, by the Identity Theorem.
suBut 0 is also a limit point of the set of 1/n when n is odd,
so by the same argument any such function must equal −1
everywhere. This is a contradiction. So no such function can
exist.


