University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

MAT C34F
2018/19

Problem Set \#2

Due date: Thursday, October 4, 2018 at the beginning of class

1. Let C be the perimeter of the square with vertices at the points $z=0, z=1, z=1+i$ and $z=i$ traversed once in that order.
(a)Compute

$$
\int_{C} \bar{z}^{2} d z
$$

Solution:

$$
\begin{gathered}
\int_{0}^{1} x^{2} d x+\int_{0}^{1}(1-i y)^{2} i d y+\int_{1}^{0}(x-i)^{2} d x+\int_{1}^{0}(-i y)^{2} i d y \\
=1 / 3+\int_{0}^{1}\left(1-2 i y-y^{2}\right) i d y-\int_{0}^{1}\left(x^{2}-2 i x-1\right) d x+\int_{0}^{1} y^{2} i d y \\
=1 / 3+i(1-i-1 / 3)-(1 / 3-i-1)+1 / 3 i \\
=1 / 3+2 / 3 i+1+2 / 3+i+1 / 3 i \\
=2+2 i
\end{gathered}
$$

(b) Show that

$$
\int_{C} e^{z} d z=0
$$

Solution: e^{z} is holomorphic everywhere, so we may use Cauchy.
2. (a) If $P(z)$ is a polynomial and Γ is any closed contour, explain why $\int_{\Gamma} P(z) d z=0$.

Solution: A polynomial has an antiderivative (in other words there exists another polynomial Q with $P(z)=d Q / d z$. This means

$$
\int_{\gamma} P(z) d z=\int_{\gamma} d Q / d z d z=Q(1)-Q(0)=0
$$

(since $Q(0)=Q(1))$
(b) Explain why part (a) shows that the function $f(z)=1 / z$ has no antiderivative in the punctured plane $\mathbf{C}-\{0\}$.
Solution: If f had an antiderivative, then the argument in part (a) would show that $\int_{\gamma} f(z) d z=0$. However we showed in class that for the unit circle this integral is $2 \pi i$.
3. Show that if C is a positively oriented circle and z_{0} lies outside C, then

$$
\int_{C} \frac{d z}{z-z_{0}}=0
$$

Solution: $f(z)=\frac{1}{z-z_{0}}$ is holomorphic inside and on the circle C (because z_{0} is outside $C)$. Hence we may apply Cauchy.
4. For each curve C and function f find the value of

$$
\begin{gathered}
\int_{C} f(z) d z \\
f(z)=\frac{z+2}{z}=1+2 / z
\end{gathered}
$$

and C is
(a) the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$

Solution:

$$
\int_{0}^{\pi} 2 i e^{i \theta} d \theta+2 \int_{0}^{\pi} 2 i d \theta=\left.2 e^{i \theta}\right|_{0} ^{\pi}+4 i \pi=2(-1-1)+4 i=-4+4 i
$$

(b) the circle $z=2 e^{i \theta}(0 \leq \theta \leq 2 \pi)$

Solution: This is $2 \int d z / z=4 \pi i$ (by earlier calculation)
5. Show that if C is the boundary of the square with vertices at the points $z=0, z=1$, $z=1+i, z=i$ and the orientation of C is counterclockwise, then

$$
\int_{C}(3 z+1) d z=0
$$

Solution: The function $f(z)=3 z+1$ is holomorphic everywhere, so we may use Cauchy to show that the integral

$$
\int_{C} f(z) d z=0
$$

