MATC34 2018 Solutions to Assignment 1

1. Prove that the function $\exp (\bar{z})$ is not holomorphic anywhere.

Solution: $f(z)=\exp \bar{z}$

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=\lim _{h \rightarrow 0} \frac{\exp (\bar{z}+\bar{h})-\exp \bar{z})}{h} \\
=\lim _{h \rightarrow 0} \frac{\bar{h}}{h \exp \bar{z}}
\end{gathered}
$$

The limit does not exist.
2. Find all the roots of the equation $\sin (z)=\cosh (4)$ by equating the real and imaginary parts of $\sin (z)$ and $\cosh (4)$.
Solution:

$$
\begin{gathered}
\sin (z)=\sin (x+i y)=\sin (x) \cosh (y)+i \cos (x) \sinh (y) \\
\sin (z)=\cosh (4)
\end{gathered}
$$

if and only if

$$
\sin (x) \cosh (y)=\cosh (4)
$$

and

$$
\cos (x) \sinh (y)=0
$$

This occurs iff $\cos (x)=0$ or $\sinh (y)=0$. This occurs iff

$$
x=n+\pi / 2
$$

(in other words $\left.\sin (x)=(-1)^{n}\right)$ or $e^{2 y}=1$. If $\cos (x)=0$, we can solve $\sin (x) \cosh (y)=\cosh (4)$ by $\cosh (y)=(-1)^{n} \cosh (4)$ but $\cosh (y) \geq 0$ so $\cosh (y)=\cosh (4)$ and n is even.

$$
e^{y}+e^{-y}=e^{4}+e^{-4}
$$

if and only if

$$
y= \pm 4
$$

Also $x=\pi / 2+2 \pi n, n \in \mathbf{Z}$
3. Express each of the following in polar coordinates: $i, 1-i, \sqrt{3}-i$.

Solution: $i=e^{i \pi / 2}$
$1-i=\sqrt{2} e^{-i \pi / 4}$
$\sqrt{3}-i=2 e^{-i \pi / 6}$
4. Express each of the following as $x+i y: e^{4 \pi i / 3}, e^{5 \pi i / 6},(1+i)^{-3}$

Solution: (a) $e^{4 \pi i / 3}=e^{i \pi / 3}=-(1 / 2+\sqrt{3} / 2 i)$
(b) $e^{5 \pi i / 6}=e^{6 i \pi / 6} e^{-i \pi / 6}=-e^{-i \pi / 6}=-(\sqrt{3} / 2-i / 2)=-\sqrt{3} / 2+i / 2$
(c)

$$
\begin{gathered}
(1+i)^{-3}=\left(\frac{1}{1+i}\right)^{3} \\
=\left(\frac{1-i}{(1+i)(1-i)}\right)^{3}=\frac{1}{8}(1-i)^{3} \\
=\frac{1}{8}\left(1-3 i+3 i^{3}-i^{3}\right)=\frac{1}{8}(-2-2 i)=\frac{1}{4}(-1-i)
\end{gathered}
$$

5. Describe each of the following sets geometrically. Which are open, which are closed, and which are compact?
(i) $\{z:|z-1-i|=1\}$
(ii) $\{z:|z-1+i| \geq|z-1-i|\}$
(iii) $\{z:|z+i| \neq|z-i|\}$
(iv) $\left\{z=|z| e^{i \theta}: \pi / 4<\theta<3 \pi / 4\right\}$

Solutions:
(i) A circle, centre $1+i$, radius 1: Closed, compact, not open.
(ii)

$$
\{z||z-1+i| \geq|z-1-i|\}
$$

The set of points closer to $1+i$ than to $1-i$, or of equal distance to both, is the closed upper half plane $\{z \mid \operatorname{Im}(z) \geq 0\}$. This is closed, not open, not compact.
(iii)

But $\{z:|z+i|=|z-i|\}$ is the line of points of equal distance from the points i and $-i$, which is the real axis. In other words it is $\mathbf{C} \backslash\{z: \operatorname{Im}(z)=0\}$ This is open, not closed, not compact.
(iv) $\left\{z=|z| e^{i \theta}: \pi / 4<\theta<3 \pi / 4\right\}$ This is the set of points with polar angle $>\pi / 4$ and $<3 \pi / 4$. This is open, not closed, not compact.
6. For each of the following choices of f, either obtain $\lim _{z \rightarrow 0} f(z)$ or prove that the limit does not exist. (i) $|z|^{2} / z$,
(ii) \bar{z} / z

Solution: (i) $\lim _{z \rightarrow 0}|z|^{2} / z=\lim _{z \rightarrow 0} \bar{z}=0$ since $|z|^{2}=z \bar{z}$.
(ii)

$$
\lim _{z \rightarrow 0} \bar{z} / z=\lim _{z \rightarrow 0} \frac{r e^{-i \theta}}{r e^{i \theta}}=\lim _{z \rightarrow 0} e^{-2 i \theta}
$$

This limit does not exist.
7. Prove that f is continuous on \mathbf{C} when (i) $f(z)=\bar{z}$
(ii) $f(z)=\operatorname{Im}(z)$
(iii) $f(z)=\operatorname{Re}\left(z^{3}\right)$

Solution:
$f(z)=\bar{z}$
$f(z+h)=\bar{z}+\bar{h} \rightarrow \bar{z}$ as $h \rightarrow 0$.
So f is continuous on \mathbf{C}.
(ii) $f(z)=\operatorname{Im}(z)$
$f(z+h)=\operatorname{Im}(z)+\operatorname{Im}(h) \rightarrow \operatorname{Im}(z)$ as $h \rightarrow 0$ so f continuous on \mathbf{C}
(iii)

$$
\begin{gathered}
f(z)=\operatorname{Re}\left(z^{2}\right)=\frac{z^{2}+\bar{z}^{2}}{2} \\
f(z+h)=\operatorname{Re}(z+h)^{2}=\frac{1}{2}\left((z+h)^{2}+(\bar{z}+\bar{h})^{2}\right) \\
=\frac{1}{2}\left(z^{2}+\bar{z}^{2}+2 h z+2 \bar{h} \bar{z}+h^{2}+\bar{h}^{2}\right) \rightarrow \frac{1}{2}\left(z^{2}+\bar{z}^{2}\right)
\end{gathered}
$$

as $h \rightarrow 0$, so f is continuous on \mathbf{C}.
8. Prove that f defined by $f(z)=z^{5} /|z|^{4}(z \neq 0), f(0)=0$ satisfies the Cauchy-Riemann equations at $z=0$ but is not differentiable there.
Proof: $f(z)=z^{5} /|z|^{4}(z \neq 0), f(0)=0$

$$
\begin{gathered}
=z^{5} /\left(z^{2} \bar{z}^{2}\right) \\
=z^{3} \bar{z}^{-2} \\
=\frac{(x+i y)^{5}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left(x^{5}-10 x^{3} y^{2}++5 x y^{4}+i\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right)\right) \\
=u(x, y)+i v(x, y)
\end{gathered}
$$

where

$$
\begin{gathered}
u=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right) \\
v=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right) \\
u_{x}= \\
\left(5 x^{4}-30 x^{2} y^{2}+5 y^{4}\right) \frac{1}{\left(x^{2}+y^{2}\right)^{2}}(:=A) \\
-\frac{4 x}{\left(x^{2}+y^{2}\right)^{3}}\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right) \\
v_{y}=\left(5 x^{4}-30 x^{2} y^{2}+5 y^{4}\right) \frac{1}{\left(x^{2}+y^{2}\right)^{2}}-\frac{4 y}{\left(x^{2}+y^{2}\right)^{3}}\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right) \\
v_{x}= \\
-\left(20 x^{3} y-20 x y^{3}\right) \frac{1}{\left(x^{2}+y^{2}\right)^{2}}(:=B) \\
-\frac{4 x}{\left(x^{2}+y^{2}\right)^{3}}\left(5 x^{4} y-10 x^{2} y^{3}+y^{5}\right) \\
-u_{y}=-\left(20 x^{3} y-20 x y^{3}\right) \frac{1}{\left(x^{2}+y^{2}\right)^{2}}+\frac{4 y}{\left(x^{2}+y^{2}\right)^{3}}\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)
\end{gathered}
$$

To evaluate u_{x} and v_{y} when $x=0$ and $y=0$,

$$
\begin{gathered}
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}=\left(\frac{d}{d x} x^{5} / x^{4}\right)_{x=0}=\left(\frac{d}{d x} x\right)_{x=0}=1 . \\
v_{y}(0,0)=\left.\frac{d}{d y}\right|_{0} v(0, y)=\left(\frac{d}{d y} y^{5} / y^{4}\right)_{y=0}=\left(\frac{d}{d y} y\right)_{y=0}=1
\end{gathered}
$$

Similarly

$$
\begin{aligned}
u_{y}(0,0) & =\left(\frac{d}{d y} u(0, y)\right)_{y=0}=\left(\frac{d}{d y}(0)\right)_{y=0}=0 \\
-v_{x}(0,0) & =\left(\frac{d}{d x} v(x, 0)\right)_{x=0}=\left(\frac{d}{d x}(0)\right)_{x=0}=0
\end{aligned}
$$

Thus $u_{x}(0,0)=v_{y}(0,0)$ and $v_{x}(0,0)=-u_{y}(0,0)$ So f satisfies the Cauchy-Riemann equations when $x=0$ and $y=0$.
Claim f is not differentiable at 0 .

$$
A=\frac{1}{h}\left(\frac{(z+h)^{5}}{|z+h|^{4}}-z^{5} /|z|^{4}\right)=\frac{\bar{h}}{h}\left(\frac{3|z|^{4}}{\bar{z}^{4}}+\frac{\bar{h}}{h} \frac{-|z|^{2} z^{2}}{\bar{z}^{4}}\right)
$$

plus higher order in h.
So $\lim _{h \rightarrow 0} A$ does not exist because $\lim _{h \rightarrow 0} \bar{h} / h$ does not exist. Hence f is not differentiable.
A cleaner solution may be obtained by setting $z=0$ at the beginning:

$$
A=\frac{1}{h}\left(\frac{h^{5}}{\bar{h}^{4}}\right)=\frac{h^{3}}{\bar{h}^{2}} .
$$

This depends on θ (where $h=r e^{i \theta}$) so the derivative does not exist.
9. Which of the following are holomorphic?
(i) $e^{z} / z(z-1)(z-2)$
(ii) $\left(1+e^{z}\right)^{-1}$

Solution:

(i) $f(z)=\frac{e^{z}}{z(z-1)(z-2)} g(z)=e^{z}$ is holomorphic everywhere $h(z)=\frac{1}{z(z-1)(z-2)}$ is holomorphic when $z \neq 0,1,2$
So $f=g h$ is holomorphic when $z \neq 0,1,2$
(ii) Solution: $f(z)=\frac{1}{\left(1+e^{z}\right)}$

$$
1+e^{z} \neq 0 \Longleftrightarrow e^{z} \neq-1
$$

$$
\begin{gathered}
\Longleftrightarrow e^{z} e^{i \pi} \neq 1 \\
\Longleftrightarrow z+i \pi \notin 2 \pi i \mathbf{Z} \\
\Longleftrightarrow z \neq i \pi(2 n+1)
\end{gathered}
$$

for any integer n
10. Where do the following series define holomorphic functions?
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{n!}$ Solution:

This is the Taylor series for $\exp (-z)-1$. It has radius of convergence ∞.
(ii)

$$
\sum_{n=0}^{\infty} z^{5 n}
$$

Solution:

$$
\sum_{n=0}^{\infty} z^{5 n}=\sum_{n=0}^{\infty}\left(z^{5}\right)^{n}=\frac{1}{1-z^{5}}
$$

By the Ratio Test, the series converges when $|z|<1$, diverges when $|z|>1$ (since the ratio of terms is $\left|a_{n} / a_{n-1}\right|=\left|z^{5}\right|$). So the series defines a holomorphic function iff $|z|<1$.
11. Determine for which values of z the following series converge absolutely:
(i) $\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{2^{n}}$
(ii) $\sum_{n=0}^{\infty}\left(\frac{z-1}{z+1}\right)^{n}$

Solution:

(i)
$\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{z+1}{2}\right)^{n}$. By the Ratio Test this series converges absolutely when $\left|\frac{z+1}{2}\right|<1$ and diverges when $\frac{z+1}{2}>1$. This means it converges absolutely when $|z+1|<2$.
(ii)
$\sum_{n=0}^{\infty}\left(\frac{z-1}{z+1}\right)^{n}$ By ratio test, series converges absolutely iff $\frac{z-1}{z+1}<1$ iff $|z-1|<|z+1|$ iff $\operatorname{Re}(z)>0$.
12. Write down an expansion of the form $\sum_{n=0}^{\infty} c_{n} z^{n}$ for
(i) $\frac{1}{1+z^{4}}$
(ii) $\frac{1}{1+z+z^{2}}$

Solution:

(i) $\frac{1}{1+z^{4}}=\sum_{n=0}^{\infty}(-1)^{n} z^{4 n}$ is valid when $|z|<1$.
(ii) $\frac{1}{\substack{1+z+z^{2} \\ \text { sion) }}}=\sum_{n=0}^{\infty}(-1)^{n} A^{n}$ where $A=z(1+z)$ (by binomial expan-

$$
=\sum_{n=0}^{\infty}(-1)^{n} z^{n}(1+z)^{n}
$$

Define $w=e^{2 \pi i / 3}$ so $\bar{w}=w^{-1}$. Then

$$
\frac{1}{z^{2}+z+1}=\frac{1}{(z-w)(z-\bar{w})}
$$

where $z^{2}+z+1=0$ iff $z=\frac{1}{2}(-1 \pm \sqrt{3} i)=e^{ \pm 2 \pi i / 3}$
Then $\frac{1}{(z-w)(z-\bar{w})}=\frac{1}{(1-z / w))(1-z / \bar{w})}=\sum_{n \geq 0} \sum_{m \geq 0} z^{n} w^{-n} \sum_{m \geq 0} z^{m} w^{m}$ $=\sum_{n \geq 0, m \geq 0} z^{n+m} w^{m-n}$.
Let $n+m=k$ and $|m-n| \leq k, m-n=k-2 n$.
So we have

$$
\sum_{k \geq 0} z^{k} \sum_{l=k \bmod 2,0 \leq|l| \leq k} w^{l}
$$

So $w^{-k}+w^{-k+2}+\ldots+w^{k-2}+w^{k}=w^{-k}\left(1+w^{2}+\ldots+w^{2 k}\right)$ $=w^{-k}\left(\frac{1-w^{2 k+2}}{1-w^{2}}\right)=\frac{w^{-k}-w^{k+2}}{1-w^{2}}$.
So the power series is $\sum_{k \geq 0} z^{k} w^{-k}\left(\frac{1-w^{2 k+2}}{1-w^{2}}\right)$
13. Find all solutions of $\cos ^{2} z=4$.

Solution:

$\cos ^{2} z=4$ iff $\cos z= \pm 2$ iff $e^{i z}+e^{-i z}= \pm 4$ iff $A=e^{i z}, A^{2} \mp 4 A+1=0$
$A=\frac{1}{2}(4 \pm \sqrt{12})$.
In other words $A=2 \pm \sqrt{3}$ or $A=-2 \pm \sqrt{3}$.
This is true iff $e^{i z}=2 \pm \sqrt{3}$ or $e^{i z}=-2 \pm \sqrt{3}$

SO
$i z=\ln (2 \pm \sqrt{3})$ or $i z=\ln (-2 \pm \sqrt{3})$
So

$$
z=-i\left(\log _{\mathbf{R}}(2+\sqrt{3})+2 \pi i n\right)
$$

or

$$
z=-i\left(\log _{\mathbf{R}}(-2+\sqrt{3})+2 \pi i n\right)
$$

or

$$
z=-i\left(\log _{\mathbf{R}}(2+\sqrt{3})+i \pi+2 \pi i n\right)
$$

or

$$
z=-i\left(\log _{\mathbf{R}}(-2+\sqrt{3})+i \pi+2 \pi i n\right)
$$

for $n \in \mathbf{Z}$.

