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1. (20 points)

(a) (7 points) Find the limit of the function f(z) = z̄ as z → 0. Here
z is a complex number.

Solution: The limit is

lim
z→0

z̄ = lim
r→0

re−iθ = 0

(where (r, θ) are polar coordinates for z).

(b) (7 points) Is the function f(z) defined by

f(z) = z̄

differentiable at z = 0? If you think so, give a proof and compute
df

dz
at this value. If you think not, show why the complex derivative

at 0 does not exist.

Solution: The derivative would be

lim
h→0

h̄/h = lim
r→0

e−2iθ

(in polar coordinates as in the first part). This limit does not
exist.

(c) (6 points) Is the function f(z) defined by

f(z) = z

differentiable at z = 0? If you think so, give a proof and compute
df

dz
at this value. If you think not, show why the complex derivative

at 0 does not exist.

Solution: This derivative is

lim
h→0

h/h = 1

(where h is a complex number). So the derivative does exist, and
its value is 1.



MATD34H page 2

2. (20 points) Let γ denote the contour around the boundary of the
square with corners 1+i, 1−i, −1+i, −1−i oriented counterclockwise.
Evaluate the following integrals:

(a) (10 points)
∫
γ

1
(z−2)(z−4)

dz

Solution: Use Cauchy’s theorem and the deformation theorem.
The only points where this not holomorphic are z = 2 and z = 4,
Neither of these points is inside the square so the answer is 0

(b) (10 points)
∫
γ
(z + z̄)dz

Solution: This is
∫

2xdx+

∫
−1

1

2xdx+

∫ 1

−1

1dy +

∫
−1

1

(−1)dy

= 0 + 0 + 2 + 2 = 4.
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3. (20 points) Let f be the function

f(z) =
1

4 + z2

(a) (7 points) Compute the integral of f around the circle |z| = 1.

Solution: This function is holomorphic except at z = ±2i. These
points are outside the unit circle so the integral is 0 by Cauchy.

(b) Compute the integral of f around the circle |z| = 4.

Solution: This function is holomorphic except at z = ±2i. we
factor

1

z2 + 4
=

1

(z + 2i)(z − 2i)

By partial fractions this equals

1

z + 2i
−

1

z − 2i

The integral
∫
γ

1
z+2i

= 2πi by the deformation theorem. .

Both points ±2i are inside the circle γ. Each contributes 2πi but
with opposite signs, so the integral is 0.

(c) Compute the integral of f around the semicircle which is the union
of {4eiθ|0 ≤ θ ≤ π} and the line segment {x| − 4 ≤ x ≤ 4} which
is a subset of the real axis.

Solution: Only the point z = 2i is inside the semicircle. we factor

1

z2 + 4
=

1

(z + 2i)(z − 2i)

By partial fractions this equals

1

z + 2i
−

1

z − 2i

The integral
∫
γ

1
z+2i

= 0 by Cauchy.

The integral
∫
γ

1
z−2i

= 2πi (by the Deformation Theorem).
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4. (20 points) Find a power series
∑

∞

n=0 cn(z − 1)n so that

1

z
=

∞∑
n=0

cn(z − 1)n.

What is its radius of convergence?

Solution:
z = (z − 1) + 1

so
1

z
=

1

(z − 1) + 1
=

∞∑
n=0

(−1)n(z − 1)n

The radius of convergence is 1 (because the radius of convergence of∑
∞

n=0 z
n is 1).
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5. (20 points) Use the Cauchy integral formula to compute the integral

∫
γ

ezdz

(z2 + 4)(z − 1)

where
γ(t) = 3eit/2

is a closed contour (it is the circle of radius 3/2 and center 0) traversed
counterclockwise.

Solution:

The Cauchy integral formula states that

2πif(a) =

∫
γ

f(z)

z − a
.

In this case choose
a = 1

and

f(z) =
ezdz

(z2 + 4)
.

Hence the integral is
2πie/5.
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