Department of Computer \& Mathematical Sciences University of Toronto Scarborough

Final Examination
MATC34H - Complex Variables

Examiner: L. Jeffrey
Date: December 19, 2013
Time: 19:00-22:00

FAMILY NAME: \qquad
GIVEN NAMES: \qquad
STUDENT NUMBER: \qquad

SIGNATURE:

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

- There are 8 numbered pages in this exam. It is your responsibility to ensure that, at the start of the exam, this booklet has all its pages.
- Answer all questions. Explain and justify your answers.
- No books or calculators are allowed.
- You may use any theorems stated in class, as long as you state them clearly and correctly.

FOR MARKERS ONLY	
Question	Marks
1	$/ 15$
2	$/ 12$
3	$/ 13$
4	

1. [15 marks] At which points are the following functions singular? You need not consider whether or not the point at infinity is a singular point.
At which points do the functions take the value 0 ?
Identify the type of singularity (pole, removable singularity, essential singularity). Also identify the order of each pole and the order of each zero.
(a) $\frac{z}{\sin (z)}$

Answer: 0 is a removable singularity. $n \pi$ is a pole of order 1 for $n \neq 0$ an integer.
(b) $\frac{\sin (z)}{z}$

This function has no zeroes.
Answer: 0 is a removable singularity.
$n \pi, n \neq 0$ is a zero
(c) $\frac{1}{e^{z}-1}$
2. [12 marks] Compute

$$
\int_{\gamma} \frac{1}{\sin (z)} d z
$$

where
(a) γ is a circle of radius 4 and centre 0 oriented counterclockwise.

Solution: By the Cauchy residue theorem, this integral is $\sum_{p} \operatorname{Res}(f(x) ; p)$ where the sum is over points p inside the circle where the residue is nonzero.
In this case this means $p=0, \pi,-\pi$.
So we need to compute the residue of $1 / \sin (z)$ at these points.
At $z=0, \sin (z)=z-z^{3} / 3!+\ldots$ which leads to the residue of $1 / \sin (z)$ at 0 being 1 .
At $z=\pi$, we decompose $\sin (z)=-\sin (z-\pi)=-(z-\pi)+(z-$ $\pi)^{3} / 3!+\ldots$ which leads to the residue of $1 / \sin (z)$ at $z=\pi$ being -1 . Similarly the residue of this function at $z=-\pi$ is -1 . This means the integral is $-2 \pi i$.
(b) γ is a circle of radius 4 and centre 5 oriented counterclockwise.

Answer: In this case all the points πi where this function has nonzero radius are at a distance more than 4 away from the center of the circle, so the integral is 0 by Cauchy's residue theorem (or Cauchy's theorem).
3. [13 marks] Compute the Laurent series of

$$
\frac{1}{(z+1)}
$$

at $z=1$ which converges for
(a) $|z-1|<2$.

Solution:

$$
\begin{gathered}
\frac{1}{z+1}=\frac{1}{(z-1)+2} \\
=\frac{1}{2} \frac{1}{1+w}
\end{gathered}
$$

where $w=(z-1) / 2$. We expand $\frac{1}{1+w}=1-w+w^{2}-\ldots$ using the binomial theorem. This converges for $|w|<1$, or $|z-1|<2$.
(b) $|z-1|>2$

Solution:

$$
\frac{1}{z+1}=\frac{1}{(z-1)+2}=\frac{1}{z-1} \frac{1}{1+v}
$$

where $v=2 /(z-1)$. We now expand this using the binomial theorem (as a power series in v. This converges for $|v|<1$, in other words for $|z-1|>2$.
4. [15 marks] Is it possible for a holomorphic function f to take the values 1 when $z=\frac{1}{n}$ for n an even positive integer, and $f(z)=0$ when $z=\frac{1}{n}$ for n an odd positive integer?
If you claim yes, give an example; if you claim no, give a proof.
Solution: By the identity theorem, any such function would have to equal 1 everywhere (because the points $1 / 2 k$ for k a positive integer have a limit point). But by the same argument, this function must equal 0 everywhere (because the points $1 /(2 k+1)$ for positive integers k have a limit point.). Contradiction. So there can not exist any such function.
5. [15 marks] Use residue calculus to compute the following integral:

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

You must explain how this integral is related to a contour integral. Compute any limits involved.
Solution: Let Γ_{R} be the semicircle $\left\{R e^{i \theta}, 0 \leq \theta \leq \pi\right\}$ in the upper half plane. Step 1: show that

$$
\left|\int_{\Gamma_{R}} f(z) d z\right| \rightarrow 0
$$

as $R \rightarrow \infty$. This integral is

$$
\begin{aligned}
& \left.\left|\int_{0}^{\pi}\right| \frac{R i e^{i R \theta} d \theta}{\left(R^{2} e^{2 i \theta}+1\right) R^{2} e^{2 i \theta}+4} \right\rvert\, \\
\leq & R \int_{0}^{\pi} d \theta \frac{1}{\left(R^{2}-1\right)\left(R^{2}-4\right)} \mapsto 0
\end{aligned}
$$

as $R \rightarrow \infty$.
Step 2: Compute $\int_{\Gamma_{R}} f(z) d z+\int_{-R}^{R} f(z) d z$ where $f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$.
Solution: By Cauchy's residue theorem, this integral is the sum of residues of $f(z)$ inside the closed contour that is the union of Γ_{R} and the interval $[-R, R]$. The only points where the function has nonzero residue are i and $2 i$. The residue of $1 /\left(z^{2}+1\right)\left(z^{2}+4\right)$ at i is $\frac{11}{2 i)(3)}$. Likewise the residue of this function at $2 i$ is $\frac{1}{4 i(-3)}$. The result is $\frac{1}{4 i(3)}=$ $-i / 12$.

6. [15 marks]

(a) Find a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

for which

$$
\begin{gathered}
f(0)=2 \\
f(2)=i \\
f(1)=\infty
\end{gathered}
$$

Find the image of the real axis under this transformation.
(b) Let $u(x, y)=x^{2}-y^{2}$. Show that u is harmonic, and find a realvalued function $v(x, y)$ for which $u(x, y)+i v(x, y)$ is a holomorphic function of $x+i y$.

7. [15 marks]

(a) (5 points) State Cauchy's residue theorem.

Solution: See question 2.
(b) (10 points) Use Cauchy's residue theorem to compute the integral $\int_{\gamma} f(z) d z$ around a semicircle of radius 1 with centre 1 in the upper half plane, oriented counterclockwise, where $f(z)$ is the following function:

$$
f(z)=\frac{1}{z^{2}+1 / 4}
$$

Solution: This function has poles only at $z= \pm i / 2$ The point $i / 2$ satisfies $|i / 2-1|>1$, so it is outside the semicircle. So by Cauchy's residue theorem (or Cauchy's theorem), the integral is 0 .
(This page is intentionally left blank.)

