University of Toronto at Scarborough Division of Physical Sciences, Mathematics

Final Examination

Friday, December 15, 2000; 9:00-12:00

No books or calculators may be used.

You may use any theorems stated in class, as long as you state them clearly and correctly.
(1) (15 points) Compute

$$
\int_{\Gamma} \frac{\sin (z) d z}{(2 z-\pi)^{2}(z-2 \pi)}
$$

where Γ is the circle with centre 0 and radius π.
Solution: Rewrite as

$$
\int_{\Gamma} \frac{\sin (z) d z}{4(z-\pi / 2)^{2}(z-2 \pi)}
$$

The only pole that contributes is at $z=\pi / 2$. The residue at that pole is
$h^{\prime}(\pi / 2)$ where

$$
h(z)=\frac{\sin (z)}{4(z-2 \pi)}
$$

According to Cauchy's integral formula for derivatives (text 13.9 p. 157) this is

$$
\begin{aligned}
h^{\prime}(\pi / 2) & =\left(\frac{1}{4}\left(\frac{\cos (z)}{(z-2 \pi)}-\frac{\sin (z)}{(z-2 \pi)^{2}}\right)_{z=\pi / 2}\right. \\
& =-\frac{1}{4(\pi / 2-2 \pi)^{2}}=-\frac{1}{9 \pi^{2}} .
\end{aligned}
$$

Hence the integral is

$$
2 \pi i h^{\prime}(\pi / 2)=-2 \pi i /\left(9 \pi^{2}\right)=-2 i /(9 \pi)
$$

(2) (15 points) Find the singularities of the following functions. For each singularity, state whether it is a removable singularity, a pole or an essential singularity, and justify your statement. Identify the orders of all poles.

You need not consider whether the point at infinity is a singularity.
(a)

$$
\frac{1}{\left(z^{2}+4\right) \sin (\pi z)}
$$

Solution: Singular at $z= \pm 2 i$: pole of order 1
Singular at z an integer: pole of order 1
(b)

$$
\frac{z}{\sin (\pi z)}
$$

Singular at z : an integer : pole of order 1 (if $z \neq 0$, removable singularity $z=0$.
(c)

$$
\sin (1 / z)
$$

Singular at $z=0$: essential singularity
(3) (15 points)
(a) Using residues, find the integral

$$
\int_{\gamma} \frac{e^{z^{3}} d z}{(z-1)^{2}}
$$

where γ is the circle with centre 0 and radius 3 .
Solution: The only poles are at $z=1$. Let $f(z)=e^{z^{3}}$ so $f^{\prime}(z)=3 z^{2} e^{z^{3}}$. Then the residue at $z=1$ is $f^{\prime}(1)=3 e$ and the integral is $6 \pi i e$.
(b) Let Γ be the square with vertices $+1+i,-1+i,-1-i$ and $+1-i$ traversed in that order (in other words counterclockwise). Compute the integral

$$
\int_{\Gamma} \frac{\cos (z) d z}{z^{3}}
$$

Solution: The only residue is at $z=0$. Because $\cos (z)=1-z^{2} / 2+\ldots$, the residue at 0 is $-1 / 2$ and the integral is $-\pi i$.
(4) (15 points)
(a) Find the Laurent series at 0 for

$$
\frac{\sin (z)}{z^{2}}
$$

Solution: $1 / z-z / 3!+\sum_{n=2}^{\infty} z^{2 n+1} /(2 n+3)$!
(b) Find the first three nonzero terms in the Laurent series at 0 for

$$
\frac{z^{2}}{\sin (z)}
$$

Solution:

$$
\left.\frac{z^{2}}{z\left(1-z^{2} / 3!+z^{4} / 5!+\ldots\right.}\right)
$$

Write $x=z^{2}$
Use

$$
\frac{1}{1+a x+b x^{2}}=1-\left(a x+b x^{2}\right)+\frac{\left(a x+b x^{2}\right)^{2}}{2}+\text { terms of order } x^{3}
$$

The sum is $1-a x+x^{2}\left(-b+a^{2}\right)$. Use $a=-1 / 3!, b=1 / 5$!
Then the first terms are $z+(1 / 6) z^{3}+(-1 / 120+(1 / 36)) z^{5}$.
(5) (15 points) Find a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

for which

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=\infty \\
& f(\infty)=1
\end{aligned}
$$

Find the image under f of the real axis and the imaginary axis. If the image is a line, you should give the line in terms of the direction perpendicular to it and a point on it. If the image is a circle, you should state the centre and the radius of this circle.

Solution:
$b=0$
$c+d=0$
$a=c$
so $a=c=-d, b=0$ and

$$
f(z)=\frac{z}{z-1}
$$

Three points on the real axis are $0,1, \infty$
These points are sent to $0, \infty, 1$ so the image of the real axis is the real axis.
Three points on the imaginary axis are $0, i, \infty$
These are sent to

$$
0,1, \frac{i}{i-1}=\frac{1}{\sqrt{2}} e^{-i \pi / 4}=\frac{i(-i-1)}{2}=\frac{1-i}{2} .
$$

The circle through these three points is the circle with centre $1 / 2$ and radius $1 / 2$.
(6) (15 points) Use contour integrals to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+x^{2}+1}
$$

Solution:
Write $x^{2}=y$

$$
y^{2}+y+1=(y+w)(y+\bar{w})
$$

where $w=\frac{1}{2}+\frac{\sqrt{3}}{2} i=e^{i \pi / 3}$. Also denote $v=e^{i \pi / 6}$, which satisfies $w=v^{2}$.
So

$$
\begin{gathered}
x^{4}+x^{2}+1=\left(x^{2}+w\right)\left(x^{2}+\bar{w}\right)=\left(x^{2} / v^{2}+1\right)\left(x^{2} / \bar{v}^{2}+1\right) \\
=(x / v+i)(x / v-i)(x / \bar{v}+i)(x / \bar{v}-i)
\end{gathered}
$$

$$
=(x+i v)(x-i v)(x+i \bar{v})(x-i \bar{v})
$$

The argument given in class shows that the integral over the real axis is equal to the limit as $R \rightarrow \infty$ of the contour integral around the semicircle of centre 0 and radius R. (because the degree of $x^{4}+x^{2}+1$ is 4 , which is greater than or equal to $2)$. So we get a contribution from the poles at $i v=e^{2 i \pi / 3}$ and $i \bar{v}=e^{i \pi / 3}$.

The residue at $i v$ is

$$
\frac{1}{(2 i v)(i v+i \bar{v})(i v-i \bar{v})}
$$

The residue at $i \bar{v}$ is

$$
\frac{1}{(i \bar{v}+i v)(i \bar{v}-i v)(2 i \bar{v})}
$$

The integral is $2 \pi i$ times the sum of these two residues. Solution:
(7) (10 points) Which of the following statements are true, and which are false? If a statement is true because of a theorem stated or proved in class, you should give the name of the theorem or state it (you are not required to prove it). If a statement is not true, you should give an example which shows it isn't valid.
: (1.) If $\int_{\triangle} f d z=0$ for all triangles \triangle in a region G, then f is holomorphic in G. Answer: True (Cauchy's theorem for triangles)
: (2.) If f is a holomorphic function on the complex plane, then f is bounded. False ($f=\exp$ is holomorphic every where on the complex plane but it is not bounded)
: (3.) If f is a bounded holomorphic function on the complex plane, then f is constant.
True (Liouville's theorem)
:(4.) If γ is a simple closed curve and $\int_{\gamma} f d z=0$ then f is holomorphic inside γ. False: if $f(z)=1 / z^{2}$ and γ is the unit circle, f is not holomorphic at 0 , but the integral of f around the unit circle is 0 .
$:\left(5\right.$.) If f is holomorphic inside a simple closed curve γ, then $\int_{\gamma} f d z=0$
True (Cauchy's theorem)
: (6.) If f is holomorphic on the unit disc $\{z||z| \leq 1\}$ then the minimum value of $|f|$ occurs on the boundary $\{z||z|=1\}$.
False (for $f(z)=z$ the minimum absolute value occurs at $z=0$)
: (7.) If f is holomorphic on the unit disc $\{z||z| \leq 1\}$ then the maximum value of $|f|$ occurs on the boundary $\{z||z|=1\}$.
True (maximum modulus theorem)
: (8.) There is a complex number z for which $\cos ^{2}(z)+\sin ^{2}(z)=2$
False: If there were, then

$$
\left.e^{i z}+e^{-i z}\right)^{2}-\left(e^{i z}-e^{-i z}\right)^{2}=8
$$

which means

$$
2+2=8
$$

which is false.
: (9.) The integral $\int_{\gamma} \frac{1}{z} d z$ has the same value for any simple closed curve γ for which $\gamma(t)$ is not equal to 0 for any t.
False : the integral depends on the winding number of γ around 0
: (10.) It is possible to define a continuous holomorphic function f on a region containing the unit circle $\{z||z|=1\}$ such that $f(z)$ is equal to one of the values of \sqrt{z} everywhere on the unit circle.

False: $f(z)=\sqrt{z}$ is not continuous on the unit circle, because if \sqrt{z} were a continuous function along a path counterclockwise from $z=1$, we would have $f\left(e^{(2 \pi-\epsilon) i}\right)$ tends to -1 as $\epsilon \rightarrow 0$, but $e^{(2 \pi-\epsilon) i} \rightarrow 1$ as $\epsilon \rightarrow 0$ and $f(1)=1$.

