University of Toronto at Scarborough
 Division of Physical Sciences, Mathematics

MAT C34F

Final Examination

Friday, December 15, 2000; 9:00-12:00

No books or calculators may be used.

You may use any theorems stated in class, as long as you state them clearly and correctly.

1. (15 points) Compute

$$
\int_{\Gamma} \frac{\sin (z) d z}{(2 z-\pi)^{2}(z-2 \pi)}
$$

where Γ is the circle with centre 0 and radius π.
2. (15 points) Find the singularities of the following functions. For each singularity, state whether it is a removable singularity, a pole or an essential singularity, and justify your statement. Identify the orders of all poles.
You need not consider whether the point at infinity is a singularity.
(a)

$$
\frac{1}{\left(z^{2}+4\right) \sin (\pi z)}
$$

(b)

$$
\frac{z}{\sin (\pi z)}
$$

(c)

$$
\sin (1 / z)
$$

3. (15 points)
(a) Using residues, find the integral

$$
\int_{\gamma} \frac{e^{z^{3}} d z}{(z-1)^{2}}
$$

where γ is the circle with centre 0 and radius 3 .
(b) Let Γ be the square with vertices $+1+i,-1+i,-1-i$ and $+1-i$ traversed in that order (in other words counterclockwise). Compute the integral

$$
\int_{\Gamma} \frac{\cos (z) d z}{z^{3}} .
$$

4. (15 points)
(a) Find the Laurent series at 0 for

$$
\frac{\sin (z)}{z^{2}}
$$

(b) Find the first three nonzero terms in the Laurent series at 0 for

$$
\frac{z^{2}}{\sin (z)}
$$

5. (15 points) Find a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

for which

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=\infty \\
& f(\infty)=1
\end{aligned}
$$

Find the image under f of the real axis and the imaginary axis. If the image is a line, you should give the line in terms of the direction perpendicular to it and a point on it. If the image is a circle, you should state the centre and the radius of this circle.
6. (15 points) Use contour integrals to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+x^{2}+1}
$$

7. (10 points) Which of the following statements are true, and which are false? If a statement is true because of a theorem stated or proved in class, you should give the name of the theorem or state it (you are not required to prove it). If a statement is not true, you should give an example which shows it isn't valid.
(1.) If $\int_{\triangle} f d z=0$ for all triangles \triangle in a region G, then f is holomorphic in G.
(2.) If f is a holomorphic function on the complex plane, then f is bounded.
(3.) If f is a bounded holomorphic function on the complex plane, then f is constant.
(4.) If γ is a simple closed curve and $\int_{\gamma} f d z=0$ then f is holomorphic inside γ.
(5.) If f is holomorphic inside a simple closed curve γ, then $\int_{\gamma} f d z=0$
(6.) If f is holomorphic on the unit disc $\{z||z| \leq 1\}$ then the minimum value of $|f|$ occurs on the boundary $\{z||z|=1\}$.
(7.) If f is holomorphic on the unit disc $\{z||z| \leq 1\}$ then the maximum value of $|f|$ occurs on the boundary $\{z||z|=1\}$.
(8.) There is a complex number z for which $\cos ^{2}(z)+\sin ^{2}(z)=2$
(9.) The integral $\int_{\gamma} \frac{1}{z} d z$ has the same value for any simple closed curve γ for which $\gamma(t)$ is not equal to 0 for any t.
(10.) It is possible to define a continuous holomorphic function f on a region containing the unit circle $\{z||z|=1\}$ such that $f(z)$ is equal to one of the values of \sqrt{z} everywhere on the unit circle.
(10.) It is possible to define a continuous holomorphic function f on a region containing the unit circle $\{z||z|=1\}$ such that $f(z)$ is equal to one of the values of \sqrt{z} everywhere on the unit circle.
