MATC34 2013 Solutions to Assignment 3

1. $\gamma=\{|z-i|=2\}$. So we need to compute $\int_{\gamma} g(z) d z$ where $g(z)=$ $\frac{1}{z^{2}+4}=\frac{1}{(z-2 i)(z+2 i)}$. The pole at $z=2 i$ is inside γ, while that at $z=-2 i$ is outside γ. So by the Cauchy integral formula, the integral is $2 \pi i f(2 i)$ where $f(z)=\frac{1}{z+2 i}$. Thus the integral is $2 \pi i f(2 i)$ where

$$
f(z)=\frac{1}{z+2 i}
$$

Thus the integral is $\frac{2 \pi i}{4 i}=\pi / 2$.
2. $f(z)=\sin ^{2} z$, expand as $\sum_{n} c_{n} z^{n}$.

$$
\begin{aligned}
& f(z)=\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)^{2}=-\frac{1}{4}\left(e^{2 i z}+e^{-2 i z}-2\right) \\
& =-\frac{1}{4}\left(\sum_{n \geq 0} \frac{2^{n} i^{n} z^{n}}{n!}+\sum_{m \geq 0} \frac{2^{m}(-i)^{m} z^{m}}{m!}-2\right)
\end{aligned}
$$

Only even m and n contribute; odd m and n cancel out. So

$$
f(z)=-\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{2^{2 n}(-1)^{n} z^{2 n}}{(2 n)!-2}\right)
$$

The radius of convergence is ∞.
3. If there were a function f holomorphic on $D(0 ; 1)$ for which $f(1 / n)=0$ when n is even and $f(1 / n)=1 / n$ when n is odd, since the sequence $\{1 / 2 n: n=1,2,3, \ldots\}$ has a limit point in the disc, by the identity theorem the function must be zero everywhere. Thus it cannot take the value $1 / n$ at the point $z_{n}=1 / n$ when n is odd. So no such function exists.
4. f holomorphic on $D(0 ; 1)$ Consider $h(z)=\overline{f(-\bar{z})}$ Claim h is holomorphic on $D(0 ; 1)$ Let $f(z)=u+i v z=x+i y$ implies $\bar{z}=x-i y$ and $-\bar{z}=-x+i y$.
So $f(-\bar{z})=u(-x, y)+i v(-x, y)$
$\bar{f}(-\bar{z})=u(-x, y)-i v(-x, y):=U(x, y)+i V(x, y)$
so $U(x, y)=u(-x, y)$ and $V(x, y)=-v(-x, y)$.
To show that h is holomorphic on $D(0 ; 1)$ it suffices to show that
(a) U and V satisfy the Cauchy-Riemann equations
(b) U and V have continuous first order partial derivatives with respect to x and y
(b) follows because u and v have continuous first order partial derivatives w.r.t. x and y
Proof of (a): Define $u_{x}=\frac{\partial u}{\partial x}(x, y)$.
Thus

$$
\begin{aligned}
\frac{\partial}{\partial x} u(-x, y) & =-\frac{\partial}{\partial(-x)} u(-x, y)=-u_{x}(-x, y) \\
\frac{\partial U(x, y)}{\partial x} & =\frac{\partial}{\partial x} u(-x, y)=-u_{x}(-x, y) \\
\frac{\partial V(x, y)}{\partial y} & =-\frac{\partial}{\partial y} v(-x, y)=-v_{y}(-x, y)
\end{aligned}
$$

So since $u_{x}=u_{y}, \partial U / \partial x=\partial V / \partial y$.

$$
\begin{gathered}
\frac{\partial U(x, y)}{\partial y}=\frac{\partial}{\partial y} u(-x, y)=u_{y}(-x, y) \\
-\frac{\partial V}{\partial x}=-\frac{\partial}{\partial x}(-v(-x, y))=-v_{x}(-x, y) .
\end{gathered}
$$

So since $u_{y}=-v_{x}$,

$$
\frac{\partial U(x, y)}{\partial y}=-\frac{\partial V(x, y)}{\partial x}
$$

Thus (U, V) satisfy the Cauchy-Riemann equations.
Thus h is holomorphic.
Thus $g(z)=f(z)-\overline{f(-\bar{z})}$ is holomorphic. If f is real on the imaginary axis, $g(z)=0$ for z on the imaginary axis, so by the identity theorem $g(z)=0$ for z in $D(0 ; 1)$. So $u(x, y)+i v(x, y)-u(-x, y)+i v(-x, y)=0$ if and only if $u(x, y)=u(-x, y)$ and $v(x, y)=-v(-x, y)$, equating the real and imaginary parts.
5. $G=\{z:|\operatorname{Re}(z)|<1$ and $|\operatorname{Im}(z)|<1\} . f$ is continuous in the closure of G (which is obtained by replacing $<$ by \leq in the two inequalities above). f is also holomorphic in G, and $f(z)=0$ if $\operatorname{Re}(z)=1$. Define g by

$$
g(z)=f(z) f(i z) f(-z) f(-i z)
$$

We can see that $g(z)=0$ on the whole boundary of G. This is true because:

- $f(z)=0$ if $\operatorname{Re}(z)=1$ (by definition)
- $f(-z)=0$ if $\operatorname{Re}(-z)=1$, in other words if $\operatorname{Re}(z)=-1$
- $f(i z)=0$ if $\operatorname{Re}(i z)=1$, in other words if $\operatorname{Im}(z)=1$ So $f(i z)=0$ if $\operatorname{Im}(z)=1$
- $f(-i z)=0$ if $\operatorname{Re}(-i z)=1$ so $f(-i z)=0$ if $\operatorname{Im}(z)=-1$

Thus by the Maximum Modulus Theorem, the maximum of $|g|$ occurs on the boundary of G, so $g=0$ on \tilde{G}, and $f=0$ on \tilde{G}.
6.

$$
\int_{\operatorname{gamma}(0 ; 1)} \frac{d z}{(z-a)(z-b)}
$$

Case 1: If $|a|<1,|b|<1$, both a and b lie inside the contour. By Cauchy integral formula, the integral equals

$$
=2 \pi i\left(\frac{1}{b-a}+\frac{1}{a-b}\right)=0
$$

Case 2:If $|a|<1,|b|>1$ then

$$
\int_{\gamma(0 ; 1)} \frac{d z}{(z-a)(z-b)}=\int_{\gamma(0 ; 1)} \frac{d z}{(z-a)} f(z)
$$

for $f(z)=\frac{1}{z-b}=\frac{2 \pi i}{a-b}$.
(similar result if $|a|>1$ and $|b|<1$)
Case 3: If $|a|>1,|b|>1$ then the integral is 0 .

