MATC34 2013 Solutions to Assignment 2

1. $f(z)=\frac{z+2}{z}=1+\frac{2}{z}$

Find $\int_{C} f(z) d z$ when $C=(\mathrm{i})$

$$
C=\left\{z=2 e^{i \theta}, 0 \leq \theta \leq \pi\right\}
$$

The integral of 1 is

$$
\int d z=\int_{0}^{\pi} 2 e^{i \theta} i d \theta=\left.2 e^{i \theta}\right|_{0} ^{\pi}=2(-2)=-4
$$

The integral of $\frac{2}{z}$ is

$$
\int 2 \frac{d z}{z}=2 \int_{0}^{\pi} i d \theta=2 \pi i
$$

so the integral is $-4+2 \pi i$.
(ii) $C=\left\{z=2 e^{i \theta}, 0 \leq \theta \leq 2 \pi\right\}$ The integral of 1 is $\left.2 e^{i \theta}\right|_{0} ^{2 \pi}=0$. The integral of $\frac{2}{z}$ is $2 \int_{0}^{2 \pi} i d \theta=4 \pi i$. so the total is $4 \pi i$. The contour C is a square with vertices $0,1, i, 1+i$.
2. To conclude that $\int_{C}(3 z+1) d z=0$, we can use Cauchy's theorem because the function $f(z)=3 z+1$ is holomorphic inside C. Alternatively we can parametrize the curve C as the disjoint union of $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ (where γ_{1} is the line segment from 0 to 1 , so $\gamma_{1}(t)=t$) γ_{2} is the line segment from 1 to $1+i,\left(\gamma_{2}(t)=1+i t\right) \gamma_{3}$ is the line segment from $1+i$ to $i\left(\gamma_{3}(t)=1+i-t\right)$
γ_{4} is the line segment from i to 0$)\left(\gamma_{4}(t)=i(1-t)\right)$
So

$$
\begin{gathered}
\int_{\gamma_{1}}(3 z+1) d z=\int_{0}^{1}(3 t+1) d t=3 / 2+1 \\
\int_{\gamma_{2}}(3 z+1) d z=\int_{0}^{1}(3(1+i t)+1) d(i t)=\int_{0}^{1}(3+3 i t+1) i d t=4 i-3 / 2 \\
\left.\int_{\gamma_{3}}(3 z+1) d z=\int_{0}^{1} 3(1+i-t)+1\right)(-d t)=\int_{0}^{1}(4+3 i-3 t)(-d t)=-4-3 i+3 / 2 \\
\int_{\gamma_{4}}(3 z+1) d z=\int_{0}^{1}(3 i(1-t)+1)(-i d t)=\int_{0}^{1}(3-i-3 t) d t=3-i-3 / 2 .
\end{gathered}
$$

Total

$$
=3 / 2+1-3 / 2+3 / 2-3 / 2-4+3+4 i-3 i-i=0
$$

3. (a)

$$
\gamma(t)=1+i e^{i t}, 0 \leq t \leq \pi
$$

Semicircle centre 1 radius 1 angle $\pi / 2$ to $3 \pi / 2$
(b) Join of $[-1,1],[1,1+i],[1+i,-1-i]$

The polygonal path is as shown
(c) $\gamma(t)=e^{i t}, t \in[0, \pi]$
$e^{-i t}, t \in[\pi, 2 \pi]$
A unit semicircle in the upper half plane centre with centre 0 traversed first counterclockwise and then clockwise.
The curve is closed.
(i) is simple
(i), (ii), (iii) are paths
(i) is smooth
4. (a) $\int_{\gamma(0 ; 1)}|z|^{4} d z=\int_{\gamma(0 ; 1)} d z=0$
(b) $\int_{\gamma(0 ; 1)}(\operatorname{Re}(z))^{2} d z=\int_{0}^{2 \pi} \cos ^{2} \theta i e^{i \theta} d \theta=i \int_{0}^{2 \pi}\left(\cos ^{3} \theta+i \cos ^{2} \theta \sin \theta\right) d \theta$ Now $\int_{0}^{2 \pi} \cos ^{3} \theta d \theta=0$ and also $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=-\int w^{2} d w$ (where $w=\cos \theta)=-\cos ^{3} \theta /\left.3\right|_{0} ^{2 \pi}=0$. So $\int_{\gamma(0 ; 1)} \operatorname{Re}(z)^{2} d z=0$.
(c) $\int_{\gamma} \frac{z^{4}-1}{z^{2}} d z=\int_{\gamma}\left(z^{2}-z^{-2}\right) d z=0$ since $\int_{\gamma(0 ; 1)} z^{n} d z=0$ unless $n=-1$.
(d) $\int_{\gamma} \sin (z) d z=-\cos (z) \mid 0^{2 \pi}=0$.
(e)

$$
\begin{gathered}
\int_{\gamma} z^{-1}(\bar{z}-1 / 2) d z=\int_{0}^{2 \pi} e^{-2 i \theta} i e^{i \theta} d \theta-1 / 2 \int Q Q Q Q d z / z \\
=i \int e^{-i \theta} d \theta-1 / 2 \int d z / z=0-1 / 2(2 \pi i)=-i \pi
\end{gathered}
$$

5. If f is holomorphic and real valued in a region (a connected open set), then f is constant.
$f=u+i v$, where $v=0$

$$
u_{x}=v_{y}=0
$$

so $u_{x}=0$.

$$
u_{y}=-v_{x}=0
$$

so $u_{y}=0$. Hence $u_{x}=u_{y}=0$ so u is constant on any connected open set in the domain. (u need not be constant everywhere: for example let $f(x, y)=-1$ when $x<-1$ and +1 when $x>1 . f$ is holomorphic on the open set $\{(x, y):|x|>1$ but not constant.
6. (i) $\int_{\gamma(0 ; 2)} \frac{1}{1+z^{2}} d z$

The function $f(z)=\frac{1}{1+z^{2}}$ has poles at $z=+i$ and $z=-i$.

$$
f(z)=\frac{1}{(z+i)(z-i)}
$$

Replace the contour by two semicircular contours Γ_{1} and Γ_{2}.

$$
\int_{\gamma(0 ; 2)} f(z) d z=\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z
$$

Each of the integrals around Γ_{1} and Γ_{2} can be evaluated by the deformation theorem:

$$
\int_{\Gamma_{1}} \frac{1}{(z+i)(z-i)} d z=\int_{\gamma(i ; r)} \frac{1}{(z+i)(z-i)} d z=\frac{1}{2 i} \int \gamma(i ; r) \frac{d z}{z-i}=\frac{2 \pi i}{2 i}
$$

Similarly
$\int_{\Gamma_{2}} \frac{1}{(z+i)(z-i)} d z=\int_{\gamma(-i ; r)} \frac{1}{(z+i)(z-i)} d z=-\frac{1}{2 i} \int \gamma(i ; r) \frac{d z}{z+i}=\frac{2 \pi i}{-2 i}$
So $\int_{\gamma(0 ; 2)} f(z) d z=0$.
(ii) $\int_{\gamma(3 i, \pi)} \frac{1}{1+z^{2}} d z$

The integrand fails to be holomorphic at $z= \pm i . \gamma(3 i ; \pi)$ has centre $3 i$ and radius π.
$3 i-i=2 i ;|3 i-i|=2<\pi$
$3 i+i=4 i ;|3 i+i|=4>\pi$
So the only point inside the contour where the integrand fails to be holomorphic is $z=+i$.
By the deformation theorem,

$$
\int_{\gamma(3 i ; \pi)} \frac{1}{z^{2}+1} d z=\int_{\gamma(i ; \epsilon)} \frac{1}{(z-i)(z+i)} d z=\frac{2 \pi i}{2 i}=\pi .
$$

7. All possible values of $\int_{\gamma} \frac{1}{1+z^{2}} d z$ where γ is a path starting at 0 , ending at 1 and not passing through $\pm i$.
One path is the path along $\mathbf{R} ; \gamma(t)=t, 0 \leq t \leq 1$
This integral is

$$
\int_{0}^{1} \frac{1}{1+t^{2}} d t=\left.\tan ^{-1}(t)\right|_{0} ^{1}=\pi / 4
$$

Integrals along all other paths will differ from this one by $\int_{\Gamma} \frac{1}{1+z^{2}} d z$ where Γ is a closed path starting at 0 .
We can decompose any such path into a closed path Γ_{1} enclosing only $+i$ and a closed path Γ_{2} enclosing only $-i$. The integral around Γ_{1} (if it is simple) is

$$
\int_{\Gamma_{1}} \frac{1}{(z-i)(z+i)} d z=\int_{\gamma(i ; \epsilon)} \frac{1}{(z-i)(z+i)} d z=\frac{2 \pi i}{2 i}=\pi .
$$

Similarly if the path Γ_{1} winds n times around $+i$, (where n could be negative if Γ is negatively oriented), the integral is $n \pi$. Likewise the integral around Γ_{2} is $-\pi m$ if Γ_{2} winds m times around $-i$ (where m is negative if Γ_{1} is negatively oriented). Thus the possible values of the integral around Γ are $\pi n(n \in \mathbf{Z})$ so the possible values of the integral around a path γ from 0 to 1 are $\pi / 4+\pi n(n \in \mathbf{Z})$.

