University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

$\underline{\text { Problem Set \#5 }}$

Due date: Thursday, November 28, 2013 at the beginning of class

Do the following problems.

1. By considering the integral

$$
\int_{\gamma(0 ; 1)} \frac{z}{\left(2 z^{4}+5 z^{2}+2\right)} d z
$$

prove that

$$
\int_{0}^{2 \pi} \frac{1}{\left.1+8 \cos ^{2} \theta\right)} d \theta=2 \pi / 3
$$

2. Evaluate

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} \frac{e^{i z}}{\left(z^{4}+z^{3}+z^{2}+z+1\right)^{2}} d z
$$

$\Gamma_{R}(\theta)=R e^{i \theta}, 0 \leq \theta \leq \pi$ is a semicircle of radius R in the upper half plane (the notation is as in class).
3. A function f is holomorphic in C except for double poles at 1 and -1 of residues a and b respectively. It is also given that, for some constant $K,\left|z^{2} f(z)\right| \leq K$ for large $|z|$. Prove that $a+b=0$. Find f if $a=1$ and $f(2 i)=f(-2 i)=0$.
4. Prove $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+x+1\right)^{2}} d x=\frac{4 \pi}{3 \sqrt{3}}$.
5. Prove $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi / 2$.
6. Prove that $\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\pi^{3} / 8$.
7. Evaluate by contour integration

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}
$$

