University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

2012/13

Problem Set #2

Due date: Thursday, September 26, 2013 at the beginning of class

1. For each arc C and function f find the value of

$$\int_C f(z)dz:$$

$$f(z) = (z+2)/z$$
 and C is

- (i) the semicircle $z = 2e^{i\theta}$ $(0 \le \theta \le \pi);$
- (ii) the circle $z = 2e^{i\theta}$ $(0 \le \theta \le 2\pi)$.
- 2. Show that if C is the boundary of the square with vertices at the points z = 0, z = 1, z = 1 + i, z = i and the orientation of C is counterclockwise, then

$$\int_C (3z+1)dz = 0.$$

- 3. Describe the image of the curve γ in the following cases.
 - (i) $\gamma(t) = 1 + ie^{it}, t \in [0, \pi]$
 - (ii) γ is the join of [-1, 1], [1, 1+i] and [1+i, -1-i]
 - (iii) γ is given by $\gamma(t) = e^{it}$ $(t \in [0, \pi])$ and $\gamma(t) = e^{-it}$ $(t \in [\pi, 2\pi])$.
- 4. Compute the integrals
 - (a) $\int_{\gamma} |z|^4 dz$,
 - (b) $\int_{\gamma} \operatorname{Re}(z)^2 dz$
 - (c) $\int_{\gamma} z^{-2} (z^4 1) dz$
 - (d) $\int_{\gamma} \sin(z) ds$
 - (e) $\int_{\gamma} z^{-1} (\bar{z} 1/2) dz$

where $\gamma = \gamma(0; 1)$.

- 5. A function is holomorphic and real-valued in a region G. Prove f is constant. Is this true if G is an arbitrary open set?
- 6. Evaluate $\int_{\gamma} (1+z^2)^{-1}$ when γ is
 - (i) $\gamma(0; 2)$
 - (ii) $\gamma(3i;\pi)$

(You shouldn't have to perform big calculations to get the answer.)

7. Let γ be a polygonal path with initial point 0 and final point 1. What are all possible values of $\int_{\gamma} (1+z^2)^{-1} dz$?