University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

MAT C34F

Problem Set \#2

Due date: Thursday, September 26, 2013 at the beginning of class

1. For each $\operatorname{arc} C$ and function f find the value of

$$
\int_{C} f(z) d z:
$$

$f(z)=(z+2) / z$ and C is
(i) the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$;
(ii) the circle $z=2 e^{i \theta}(0 \leq \theta \leq 2 \pi)$.
2. Show that if C is the boundary of the square with vertices at the points $z=0, z=1$, $z=1+i, z=i$ and the orientation of C is counterclockwise, then

$$
\int_{C}(3 z+1) d z=0
$$

3. Describe the image of the curve γ in the following cases.
(i) $\gamma(t)=1+i e^{i t}, t \in[0, \pi]$
(ii) γ is the join of $[-1,1],[1,1+i]$ and $[1+i,-1-i]$
(iii) γ is given by $\gamma(t)=e^{i t}(t \in[0, \pi])$ and $\gamma(t)=e^{-i t}(t \in[\pi, 2 \pi])$.
4. Compute the integrals
(a) $\int_{\gamma}|z|^{4} d z$,
(b) $\int_{\gamma} \operatorname{Re}(\mathrm{z})^{2} d z$
(c) $\int_{\gamma} z^{-2}\left(z^{4}-1\right) d z$
(d) $\int_{\gamma} \sin (z) d s$
(e) $\int_{\gamma} z^{-1}(\bar{z}-1 / 2) d z$
where $\gamma=\gamma(0 ; 1)$.
5. A function is holomorphic and real-valued in a region G. Prove f is constant. Is this true if G is an arbitrary open set?
6. Evaluate $\int_{\gamma}\left(1+z^{2}\right)^{-1}$ when γ is
(i) $\gamma(0 ; 2)$
(ii) $\gamma(3 i ; \pi)$
(You shouldn't have to perform big calculations to get the answer.)
7. Let γ be a polygonal path with initial point 0 and final point 1 . What are all possible values of $\int_{\gamma}\left(1+z^{2}\right)^{-1} d z$?
