
7. Cauchy’s Residue Theorem

Definition 7.1. If f is holomorphic on D′(a; r) with a pole at a, the
residue of f at a is the coefficient c−1 of (z − a)−1 in the Laurent
expansion of f about a (denoted Res(f(z); a)).

Lemma 7.2. Suppose f is holomorphic inside and on a positively ori-
ented contour γ except at a ⊂ γ, where it has a pole. Then

∫

γ

f(z)dz = 2πic−1.

Proof: Choose r such that D̄(a; r) ⊂ I(γ). Then
∫

γ

f(z)dz =

∫

γ(a;r)

f(z)dz

(by deformation theory)

=

∫

γ(a;r)

∞
∑

n=−m

cn(z − a)ndz

=
∞
∑

n=−m

cn

∫

γ(a;r)

(z − a)ndz = 2πic−1.

Theorem 7.3 (Cauchy residue formula). Suppose f is holomorphic
inside and on a positively oriented contour γ except for a finite number
of poles at a1, . . . , am inside γ. Then

∫

γ

f(z)dz = 2πi
m
∑

k=1

Res(f(z); ak).

Theorem 7.4 (Zero-pole theorem). Suppose f is holomorphic inside
and on a positively oriented contour γ except for P poles and N zeros
inside γ, and that f is nonzero on γ. Then

1

2πi

∫

γ

f ′(z)

f(z)
dz = N − P

(counting according to multiplicities).

Proof of Cauchy residue formula:

Proof. Let fk be the principal part of the Laurent expansion of f around
ak. Then

g := f −

m
∑

k=1

fk

1
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has only removable singularities at a1, . . . , am. Redefining it at the
poles ak, g is holomorphic inside and on γ. By Cauchy’s theorem,
∫

γ
g(z)dz = 0. So by the previous Lemma

∫

γ
f(z)dz =

∑m
k=1

∫

γ
fk(z)dz =

2πi
∑m

k=1Res(f(z); ak). �

Proof of zero-pole theorem:

Proof. The function f ′/f is holomorphic inside and on γ except at poles
and zeros of f inside γ. If a is a zero of f of order m, then there is
a function g which is holomorphic and nonzero in some D(a; r) with
f(z) = (z − a)mg(z) in D(a; r). Then

f ′(z)

f(z)
=

m

z − a
+

g′(z)

g(z)
.

�

7.1. Rouché’s Theorem.

Theorem 7.5 (Rouché). Suppose f and g are holomorphic inside and
on a contour γ and suppose |f(z)| > |g(z)| on γ. Then f and f + g
have the same number of zeros inside γ.

Proof of Rouché: Let t ∈ [0, 1]. Since |f(z)| > |g(z)| on γ, (f +
tg)(z) 6= 0 for any z ∈ γ. Assume WLOG γ positively oriented. Define

φ(t) =
1

2πi

∫

γ

(f ′ + tg′)(z)

(f + tg)(z)
dz.

By the zero-pole theorem, φ(t) equals the number of zeros of f + tg
inside γ. φ is integer-valued; if it is continuous, it must be a constant.
So if φ(0) = φ(1), then the number of zeros of f is equal to the number
of zeros of f + g. To prove φ is continuous:

φ(t)− φ(s) =
t− s

2πi

∫

γ

(g′f − f ′g)(z)

(f + tg)(z)(f + sg)(z)
dz

Since a continuous function on a compact set attains its maximum and
its minimum, we can find positive numbers M and m such that for all
z ∈ γ, | (g′f − f ′g)(z) |≤ M, | g(z) |≤ M , | (f + tg)(z) |≥ m. Then
| (f + sg)z) |≥| (f + tg)(z) | − | s − t | |g(z)| ≥ m/2 if |s − t| ≤ m

2M
.

So for small enough |s− t|, by the estimation theorem, |φ(t)− φ(s)| ≤
|t−s|M
πm

length(γ). So φ is continuous at t.
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7.2. Zeros and residues.

Lemma 7.6.

Res(f(z); a) = limz→an(z − a)f(z).

Proof. In D′(a; r), f(z) =
∑∞

n=−1 cn(z − a)n so limz→a(z − a)f(a) =
c−1. �

simple pole of type I: g(z)(z − a) for g holomorphic in D(a; r),

Res(f(z); a) = g(a).

Simple pole of type II:

f(z) =
h(z)

k(z)

h, k holomorphic in D(a; r), h(a) 6= 0, k(a) = 0, k′(a) 6= 0
Then

Res(f(z); a) =
h(a)

k′(a)
.

Multiple pole type I g(z)(z − a)−m for g holo. in D(a; r):

Res(f(z); a) =
1

(m− 1)!
g(m−1)(a).

Multiple pole type II: Compute c−1 in the Laurent expansion, or
convert to type I.

Example 7.1. How many zeros does f(z) = 2 + z2 − eiz have in the
upper half plane z ∈ C|Im(z) > 0}?

Example 7.2. Take f(z) = 2 + z2, g(z) = −eiz, and define a semi-
circular contour ΓR with diameter 2R and centre 0. On [−R,R] (the
part of the contour on the real axis), |f(z)| ≥ 2, |g(z)| = 1. On the
semicircular arc z = Reiθ, 0 ≤ θ ≤ π,

f(z) = 2 +R2e2iθ.

|f(z)| ≥| |R2e2iθ| − 2 |= R2 − 1

|g(z)| = e−R sin(θ) ≤ 1

(for sin(θ) ≥ 0.) So again |f(z)| ≥ |g(z)|, so by Rouché f + g has the
same number of zeros as f , which is 1.

Example 7.3.

f(z) =
1

z2 + 1
=

1

(z − i)(z + i)

Resz=if(z) =
1

2i
, Resz=−if(z) = −

1

2i
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Example 7.4.

f(z) =
1

sin(z)
=

1

z(1− z2/3! + . . . )

Resz=0
1

sin(z)
= 1.

Example 7.5.

f(z) =
1

(2− z)(z2 + 4)
= −

1

(z − 2)(z − 2i)(z + 2i)

Resz=2f(z) = −
1

4 + 4
= −

1

8
.

Resz=2if(z) =
1

(2− 2i)(2i+ 2i)

7.3. Estimation of integrals.

7.3.1. I. .

(1) |z1 + z2| ≤ |z1|+ |z2|
(2) |z1 + · · ·+ zn| ≤

∑n
i=1 |zi|

(3) |z1 + z2| ≥ ||z1| − |z2||
(4) |z1 + · · ·+ zn| ≥ |z1| −

∑n
j=2 |zi|

7.4. Extra topic: Multifunctions.

Example 7.6. Examples of multifunctions:

(1) log(z) defined for z ∈ C \ {0}
(2) f(z) = zα (α ∈ C) defined for z ∈ C \ {0}
(3) f(z) = log(p(z)/q(z)) defined except on the zeroes of p and q

(where p and q are polynomials)

Definition 7.7. A multi-valued function f(z) is the assignment to z
of a set of complex numbers [w(z)].

Example 7.7. Logarithm [log(z)] = {log |z| + iθ : θ ∈ [arg(z)]} (in
other words z = reiθ)

Example 7.8. Power [z1/n] = {|z|1/ne2πim/n|m ∈ Z} (there are n
different values of m)

Definition 7.8. Let [w(z)] be a multivalued function. A branch point
of w is a point a ∈ C such that for sufficiently small circles γ(a, r)
around a, it is not possible to choose a continuous f(z) of [w(z)] defin-
ing a continuous function on γ(a, r).

Example 7.9. log(z) is single valued on C \ {z ∈ R|z ≥ 0}. Likewise
zα for any α ∈ C since zα is defined as exp(α log(z)).
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7.5. Logarithm. z = reiθ

logk(r, θ) = log(r) + i(θ + 2πk)

is a continuous function of r and θ (r > 0 and θ ∈ R) Note that logk
do not define a continuous choice of log on C \ {0}. As we move along
a circle γ centred at 0, we pass from logk to logk+1 as θ moves from 0
to 2π. To stop this from happening, we cut C along the negative real
axis (or along any other half-line from 0 to ∞).

Example 7.10. Powers

Pk(r, θ) = r1/neiθ/ne2πik/n

(for r > 0 and θ ∈ R) Then Pk(r, θ + 2π) = Pk+1(r, θ) and Pn−1(r, θ +
2π) so there are really n branches of the function z1/n, and they are
permuted cyclically as we pass around a circle around 0 and θ goes from
0 to 2π.

Example 7.11.

f(z) =
√

(z − 1)(z + 1)

The set of branch points is {−1, 1}. Moving around a circular contour
that winds around +1 or −1 with winding number 1, but not around
both, will cause the function to pick up a factor of −1. To stop this
from happening, we cut the plane along the line between 1 and −1.
Along any contour in the cut plane, f is single valued.

Example 7.12.

f(z) = log(
z + i

z − i
)

Branch points +i,−i,∞
Cut the plane from i to ∞ along the positive y axis.
Cut the plane from −i to ∞ along the negative y axis.
Along the cut plane,

i

2
log

(

z + i

z − i

)

is single valued. This is the definition of arctan(z) (the antiderivative
of 1

z2+1
): it is not single valued in the whole plane or upper half plane,

only in the cut plane.


