7. Cauchy's Residue Theorem

Definition 7.1. If f is holomorphic on $D^{\prime}(a ; r)$ with a pole at a, the residue of f at a is the coefficient c_{-1} of $(z-a)^{-1}$ in the Laurent expansion of f about a (denoted $\operatorname{Res}(f(z) ; a)$).

Lemma 7.2. Suppose f is holomorphic inside and on a positively oriented contour γ except at $a \subset \gamma$, where it has a pole. Then

$$
\int_{\gamma} f(z) d z=2 \pi i c_{-1} .
$$

Proof: Choose r such that $\bar{D}(a ; r) \subset I(\gamma)$. Then

$$
\int_{\gamma} f(z) d z=\int_{\gamma(a ; r)} f(z) d z
$$

(by deformation theory)

$$
\begin{gathered}
=\int_{\gamma(a ; r)} \sum_{n=-m}^{\infty} c_{n}(z-a)^{n} d z \\
=\sum_{n=-m}^{\infty} c_{n} \int_{\gamma(a ; r)}(z-a)^{n} d z=2 \pi i c_{-1} .
\end{gathered}
$$

Theorem 7.3 (Cauchy residue formula). Suppose f is holomorphic inside and on a positively oriented contour γ except for a finite number of poles at a_{1}, \ldots, a_{m} inside γ. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{m} \operatorname{Res}\left(f(z) ; a_{k}\right) .
$$

Theorem 7.4 (Zero-pole theorem). Suppose f is holomorphic inside and on a positively oriented contour γ except for P poles and N zeros inside γ, and that f is nonzero on γ. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=N-P
$$

(counting according to multiplicities).
Proof of Cauchy residue formula:
Proof. Let f_{k} be the principal part of the Laurent expansion of f around a_{k}. Then

$$
g:=f-\sum_{k=1}^{m} f_{k}
$$

has only removable singularities at a_{1}, \ldots, a_{m}. Redefining it at the poles a_{k}, g is holomorphic inside and on γ. By Cauchy's theorem, $\int_{\gamma} g(z) d z=0$. So by the previous Lemma $\int_{\gamma} f(z) d z=\sum_{k=1}^{m} \int_{\gamma} f_{k}(z) d z=$ $2 \pi i \sum_{k=1}^{m} \operatorname{Res}\left(f(z) ; a_{k}\right)$.

Proof of zero-pole theorem:
Proof. The function f^{\prime} / f is holomorphic inside and on γ except at poles and zeros of f inside γ. If a is a zero of f of order m, then there is a function g which is holomorphic and nonzero in some $D(a ; r)$ with $f(z)=(z-a)^{m} g(z)$ in $D(a ; r)$. Then

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z-a}+\frac{g^{\prime}(z)}{g(z)} .
$$

7.1. Rouché's Theorem.

Theorem 7.5 (Rouché). Suppose f and g are holomorphic inside and on a contour γ and suppose $|f(z)|>|g(z)|$ on γ. Then f and $f+g$ have the same number of zeros inside γ.

Proof of Rouché: Let $t \in[0,1]$. Since $|f(z)|>|g(z)|$ on $\gamma,(f+$ $\operatorname{tg})(z) \neq 0$ for any $z \in \gamma$. Assume WLOG γ positively oriented. Define

$$
\phi(t)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\left(f^{\prime}+t g^{\prime}\right)(z)}{(f+t g)(z)} d z
$$

By the zero-pole theorem, $\phi(t)$ equals the number of zeros of $f+t g$ inside $\gamma . \phi$ is integer-valued; if it is continuous, it must be a constant. So if $\phi(0)=\phi(1)$, then the number of zeros of f is equal to the number of zeros of $f+g$. To prove ϕ is continuous:

$$
\phi(t)-\phi(s)=\frac{t-s}{2 \pi i} \int_{\gamma} \frac{\left(g^{\prime} f-f^{\prime} g\right)(z)}{(f+t g)(z)(f+s g)(z)} d z
$$

Since a continuous function on a compact set attains its maximum and its minimum, we can find positive numbers M and m such that for all $z \in \gamma,\left|\left(g^{\prime} f-f^{\prime} g\right)(z)\right| \leq M,|g(z)| \leq M,|(f+t g)(z)| \geq m$. Then $\mid(f+s g) z)|\geq|(f+t g)(z)|-|s-t|| g(z) \mid \geq m / 2$ if $|s-t| \leq \frac{m}{2 M}$.
So for small enough $|s-t|$, by the estimation theorem, $|\phi(t)-\phi(s)| \leq$ $\frac{|t-s| M}{\pi m} \operatorname{length}(\gamma)$. So ϕ is continuous at t.

7.2. Zeros and residues.

Lemma 7.6.

$$
\operatorname{Res}(f(z) ; a)=\lim _{z \rightarrow a_{n}}(z-a) f(z)
$$

Proof. In $D^{\prime}(a ; r), f(z)=\sum_{n=-1}^{\infty} c_{n}(z-a)^{n}$ so $\lim _{z \rightarrow a}(z-a) f(a)=$ c_{-1}.
simple pole of type $I: g(z)(z-a)$ for g holomorphic in $D(a ; r)$,

$$
\operatorname{Res}(f(z) ; a)=g(a) .
$$

Simple pole of type II:

$$
f(z)=\frac{h(z)}{k(z)}
$$

h, k holomorphic in $D(a ; r), h(a) \neq 0, k(a)=0, k^{\prime}(a) \neq 0$
Then

$$
\operatorname{Res}(f(z) ; a)=\frac{h(a)}{k^{\prime}(a)}
$$

Multiple pole type $I g(z)(z-a)^{-m}$ for g holo. in $D(a ; r)$:

$$
\operatorname{Res}(f(z) ; a)=\frac{1}{(m-1)!} g^{(m-1)}(a)
$$

Multiple pole type II: Compute c_{-1} in the Laurent expansion, or convert to type I.

Example 7.1. How many zeros does $f(z)=2+z^{2}-e^{i z}$ have in the upper half plane $z \in \mathbf{C} \mid \operatorname{Im}(\mathbf{z})>\mathbf{0}\}$?

Example 7.2. Take $f(z)=2+z^{2}, g(z)=-e^{i z}$, and define a semicircular contour Γ_{R} with diameter $2 R$ and centre 0 . On $[-R, R]$ (the part of the contour on the real axis), $|f(z)| \geq 2,|g(z)|=1$. On the semicircular arc $z=R e^{i \theta}, 0 \leq \theta \leq \pi$,

$$
\begin{gathered}
f(z)=2+R^{2} e^{2 i \theta} \\
|f(z)| \geq\left|\left|R^{2} e^{2 i \theta}\right|-2\right|=R^{2}-1 \\
|g(z)|=e^{-R \sin (\theta)} \leq 1
\end{gathered}
$$

(for $\sin (\theta) \geq 0$.) So again $|f(z)| \geq|g(z)|$, so by Rouché $f+g$ has the same number of zeros as f, which is 1 .

Example 7.3.

$$
\begin{gathered}
f(z)=\frac{1}{z^{2}+1}=\frac{1}{(z-i)(z+i)} \\
\operatorname{Res}_{z=i} f(z)=\frac{1}{2 i}, \operatorname{Res}_{z=-i} f(z)=-\frac{1}{2 i}
\end{gathered}
$$

Example 7.4.

$$
\begin{aligned}
f(z)= & \frac{1}{\sin (z)}=\frac{1}{z\left(1-z^{2} / 3!+\ldots\right)} \\
& \operatorname{Res}_{z=0} \frac{1}{\sin (z)}=1
\end{aligned}
$$

Example 7.5.

$$
\begin{aligned}
f(z)=\frac{1}{(2-z)\left(z^{2}+4\right)} & =-\frac{1}{(z-2)(z-2 i)(z+2 i)} \\
\operatorname{Res}_{z=2} f(z) & =-\frac{1}{4+4}=-\frac{1}{8} . \\
\operatorname{Res}_{z=2 i} f(z) & =\frac{1}{(2-2 i)(2 i+2 i)}
\end{aligned}
$$

7.3. Estimation of integrals.

7.3.1. I. .
(1) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(2) $\left|z_{1}+\cdots+z_{n}\right| \leq \sum_{i=1}^{n}\left|z_{i}\right|$
(3) $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
(4) $\left|z_{1}+\cdots+z_{n}\right| \geq\left|z_{1}\right|-\sum_{j=2}^{n}\left|z_{i}\right|$

7.4. Extra topic: Multifunctions.

Example 7.6. Examples of multifunctions:
(1) $\log (z)$ defined for $z \in \mathbf{C} \backslash\{\mathbf{0}\}$
(2) $f(z)=z^{\alpha}(\alpha \in \mathbf{C})$ defined for $z \in \mathbf{C} \backslash\{\mathbf{0}\}$
(3) $f(z)=\log (p(z) / q(z))$ defined except on the zeroes of p and q (where p and q are polynomials)
Definition 7.7. A multi-valued function $f(z)$ is the assignment to z of a set of complex numbers $[w(z)]$.
Example 7.7. Logarithm $[\log (z)]=\{\log |z|+i \theta: \theta \in[\arg (z)]\}$ (in other words $z=r e^{i \theta}$)

Example 7.8. Power $\left[z^{1 / n}\right]=\left\{|z|^{1 / n} e^{2 \pi i m / n} \mid m \in \mathbf{Z}\right\}$ (there are n different values of m)

Definition 7.8. Let $[w(z)]$ be a multivalued function. A branch point of w is a point $a \in \mathbf{C}$ such that for sufficiently small circles $\gamma(a, r)$ around a, it is not possible to choose a continuous $f(z)$ of $[w(z)]$ defining a continuous function on $\gamma(a, r)$.
Example 7.9. $\log (z)$ is single valued on $\mathbf{C} \backslash\{\mathbf{z} \in \mathbf{R} \mid \mathbf{z} \geq \mathbf{0}\}$. Likewise z^{α} for any $\alpha \in \mathbf{C}$ since z^{α} is defined as $\exp (\alpha \log (z))$.
7.5. Logarithm. $z=r e^{i \theta}$

$$
\log _{k}(r, \theta)=\log (r)+i(\theta+2 \pi k)
$$

is a continuous function of r and $\theta(r>0$ and $\theta \in \mathbf{R})$ Note that $\log _{k}$ do not define a continuous choice of \log on $\mathbf{C} \backslash\{\mathbf{0}\}$. As we move along a circle γ centred at 0 , we pass from $\log _{k}$ to $\log _{k+1}$ as θ moves from 0 to 2π. To stop this from happening, we cut \mathbf{C} along the negative real axis (or along any other half-line from 0 to ∞).

Example 7.10. Powers

$$
P_{k}(r, \theta)=r^{1 / n} e^{i \theta / n} e^{2 \pi i k / n}
$$

(for $r>0$ and $\theta \in \mathbf{R})$ Then $P_{k}(r, \theta+2 \pi)=P_{k+1}(r, \theta)$ and $P_{n-1}(r, \theta+$ 2π) so there are really n branches of the function $z^{1 / n}$, and they are permuted cyclically as we pass around a circle around 0 and θ goes from 0 to 2π.

Example 7.11.

$$
f(z)=\sqrt{(z-1)(z+1)}
$$

The set of branch points is $\{-1,1\}$. Moving around a circular contour that winds around +1 or -1 with winding number 1 , but not around both, will cause the function to pick up a factor of -1 . To stop this from happening, we cut the plane along the line between 1 and -1. Along any contour in the cut plane, f is single valued.

Example 7.12.

$$
f(z)=\log \left(\frac{z+i}{z-i}\right)
$$

Branch points $+i,-i, \infty$
Cut the plane from i to ∞ along the positive y axis.
Cut the plane from $-i$ to ∞ along the negative y axis.
Along the cut plane,

$$
\frac{i}{2} \log \left(\frac{z+i}{z-i}\right)
$$

is single valued. This is the definition of $\arctan (z)$ (the antiderivative of $\left.\frac{1}{z^{2}+1}\right)$: it is not single valued in the whole plane or upper half plane, only in the cut plane.

