7. CAUCHY'S RESIDUE THEOREM

Definition 7.1. If f is holomorphic on D'(a;r) with a pole at a, the residue of f at a is the coefficient c_{-1} of $(z-a)^{-1}$ in the Laurent expansion of f about a (denoted $\operatorname{Res}(f(z);a)$).

Lemma 7.2. Suppose f is holomorphic inside and on a positively oriented contour γ except at $a \subset \gamma$, where it has a pole. Then

$$\int_{\gamma} f(z)dz = 2\pi i c_{-1}.$$

Proof: Choose r such that $\overline{D}(a;r) \subset I(\gamma)$. Then

$$\int_{\gamma} f(z) dz = \int_{\gamma(a;r)} f(z) dz$$

(by deformation theory)

$$= \int_{\gamma(a;r)} \sum_{n=-m}^{\infty} c_n (z-a)^n dz$$
$$= \sum_{n=-m}^{\infty} c_n \int_{\gamma(a;r)} (z-a)^n dz = 2\pi i c_{-1}.$$

Theorem 7.3 (Cauchy residue formula). Suppose f is holomorphic inside and on a positively oriented contour γ except for a finite number of poles at a_1, \ldots, a_m inside γ . Then

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f(z); a_k).$$

Theorem 7.4 (Zero-pole theorem). Suppose f is holomorphic inside and on a positively oriented contour γ except for P poles and N zeros inside γ , and that f is nonzero on γ . Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N - P$$

(counting according to multiplicities).

Proof of Cauchy residue formula:

Proof. Let f_k be the principal part of the Laurent expansion of f around a_k . Then

$$g := f - \sum_{k=1}^{m} f_k$$

has only removable singularities at a_1, \ldots, a_m . Redefining it at the poles a_k , g is holomorphic inside and on γ . By Cauchy's theorem, $\int_{\gamma} g(z)dz = 0$. So by the previous Lemma $\int_{\gamma} f(z)dz = \sum_{k=1}^{m} \int_{\gamma} f_k(z)dz = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f(z); a_k)$.

Proof of zero-pole theorem:

Proof. The function f'/f is holomorphic inside and on γ except at poles and zeros of f inside γ . If a is a zero of f of order m, then there is a function g which is holomorphic and nonzero in some D(a;r) with $f(z) = (z-a)^m g(z)$ in D(a;r). Then

$$\frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}.$$

7.1. Rouché's Theorem.

Theorem 7.5 (Rouché). Suppose f and g are holomorphic inside and on a contour γ and suppose |f(z)| > |g(z)| on γ . Then f and f + ghave the same number of zeros inside γ .

Proof of Rouché: Let $t \in [0, 1]$. Since |f(z)| > |g(z)| on γ , $(f + tg)(z) \neq 0$ for any $z \in \gamma$. Assume WLOG γ positively oriented. Define

$$\phi(t) = \frac{1}{2\pi i} \int_{\gamma} \frac{(f' + tg')(z)}{(f + tg)(z)} dz.$$

By the zero-pole theorem, $\phi(t)$ equals the number of zeros of f + tginside γ . ϕ is integer-valued; if it is continuous, it must be a constant. So if $\phi(0) = \phi(1)$, then the number of zeros of f is equal to the number of zeros of f + g. To prove ϕ is continuous:

$$\phi(t) - \phi(s) = \frac{t-s}{2\pi i} \int_{\gamma} \frac{(g'f - f'g)(z)}{(f+tg)(z)(f+sg)(z)} dz$$

Since a continuous function on a compact set attains its maximum and its minimum, we can find positive numbers M and m such that for all $z \in \gamma$, $|(g'f - f'g)(z)| \leq M$, $|g(z)| \leq M$, $|(f + tg)(z)| \geq m$. Then $|(f + sg)z)| \geq |(f + tg)(z)| - |s - t| |g(z)| \geq m/2$ if $|s - t| \leq \frac{m}{2M}$. So for small enough |s - t|, by the estimation theorem, $|\phi(t) - \phi(s)| \leq \frac{|t-s|M}{\pi m} \text{length}(\gamma)$. So ϕ is continuous at t. 7.2. Zeros and residues.

Lemma 7.6.

$$\operatorname{Res}(f(z); a) = \lim_{z \to a_n} (z - a) f(z).$$

Proof. In D'(a;r), $f(z) = \sum_{n=-1}^{\infty} c_n (z-a)^n$ so $\lim_{z \to a} (z-a) f(a) = c_{-1}$.

simple pole of type I: g(z)(z-a) for g holomorphic in D(a;r),

$$\operatorname{Res}(f(z);a) = g(a).$$

Simple pole of type II:

$$f(z) = \frac{h(z)}{k(z)}$$

h,k holomorphic in $D(a;r), \ h(a) \neq 0, \ k(a) = 0, \ k'(a) \neq 0$ Then

$$\operatorname{Res}(f(z);a) = \frac{h(a)}{k'(a)}$$

Multiple pole type $I g(z)(z-a)^{-m}$ for g holo. in D(a;r):

$$\operatorname{Res}(f(z); a) = \frac{1}{(m-1)!}g^{(m-1)}(a).$$

Multiple pole type II: Compute c_{-1} in the Laurent expansion, or convert to type I.

Example 7.1. How many zeros does $f(z) = 2 + z^2 - e^{iz}$ have in the upper half plane $z \in \mathbb{C}|\text{Im}(\mathbf{z}) > \mathbf{0}\}$?

Example 7.2. Take $f(z) = 2 + z^2$, $g(z) = -e^{iz}$, and define a semicircular contour Γ_R with diameter 2R and centre 0. On [-R, R] (the part of the contour on the real axis), $|f(z)| \ge 2$, |g(z)| = 1. On the semicircular arc $z = Re^{i\theta}, 0 \le \theta \le \pi$,

$$f(z) = 2 + R^2 e^{2i\theta}.$$

$$|f(z)| \ge |R^2 e^{2i\theta}| - 2| = R^2 - 1$$

$$|g(z)| = e^{-R\sin(\theta)} \le 1$$

(for $\sin(\theta) \ge 0$.) So again $|f(z)| \ge |g(z)|$, so by Rouché f + g has the same number of zeros as f, which is 1.

Example 7.3.

$$f(z) = \frac{1}{z^2 + 1} = \frac{1}{(z - i)(z + i)}$$
$$\operatorname{Res}_{z=i} f(z) = \frac{1}{2i}, \ \operatorname{Res}_{z=-i} f(z) = -\frac{1}{2i}$$

Example 7.4.

$$f(z) = \frac{1}{\sin(z)} = \frac{1}{z(1 - z^2/3! + \dots)}$$
$$\operatorname{Res}_{z=0} \frac{1}{\sin(z)} = 1.$$

Example 7.5.

$$f(z) = \frac{1}{(2-z)(z^2+4)} = -\frac{1}{(z-2)(z-2i)(z+2i)}$$
$$\operatorname{Res}_{z=2}f(z) = -\frac{1}{4+4} = -\frac{1}{8}.$$
$$\operatorname{Res}_{z=2i}f(z) = \frac{1}{(2-2i)(2i+2i)}$$

7.3. Estimation of integrals.

7.3.1.~I. .

 $\begin{array}{ll} (1) & |z_1 + z_2| \le |z_1| + |z_2| \\ (2) & |z_1 + \dots + z_n| \le \sum_{i=1}^n |z_i| \\ (3) & |z_1 + z_2| \ge ||z_1| - |z_2|| \\ (4) & |z_1 + \dots + z_n| \ge |z_1| - \sum_{j=2}^n |z_i| \end{array}$

7.4. Extra topic: Multifunctions.

Example 7.6. Examples of multifunctions:

- (1) $\log(z)$ defined for $z \in \mathbf{C} \setminus \{\mathbf{0}\}$
- (2) $f(z) = z^{\alpha} \ (\alpha \in \mathbf{C}) \ defined \ for \ z \in \mathbf{C} \setminus \{\mathbf{0}\}$
- (3) $f(z) = \log(p(z)/q(z))$ defined except on the zeroes of p and q (where p and q are polynomials)

Definition 7.7. A multi-valued function f(z) is the assignment to z of a set of complex numbers [w(z)].

Example 7.7. Logarithm $[\log(z)] = \{\log |z| + i\theta : \theta \in [arg(z)]\}$ (in other words $z = re^{i\theta}$)

Example 7.8. Power $[z^{1/n}] = \{|z|^{1/n}e^{2\pi i m/n}|m \in \mathbf{Z}\}$ (there are n different values of m)

Definition 7.8. Let [w(z)] be a multivalued function. A branch point of w is a point $a \in \mathbb{C}$ such that for sufficiently small circles $\gamma(a, r)$ around a, it is not possible to choose a continuous f(z) of [w(z)] defining a continuous function on $\gamma(a, r)$.

Example 7.9. $\log(z)$ is single valued on $\mathbf{C} \setminus \{\mathbf{z} \in \mathbf{R} | \mathbf{z} \ge \mathbf{0}\}$. Likewise z^{α} for any $\alpha \in \mathbf{C}$ since z^{α} is defined as $\exp(\alpha \log(z))$.

4

7.5. Logarithm. $z = re^{i\theta}$

 $\log_k(r,\theta) = \log(r) + i(\theta + 2\pi k)$

is a continuous function of r and θ (r > 0 and $\theta \in \mathbf{R}$) Note that \log_k do not define a continuous choice of log on $\mathbf{C} \setminus \{\mathbf{0}\}$. As we move along a circle γ centred at 0, we pass from \log_k to \log_{k+1} as θ moves from 0 to 2π . To stop this from happening, we cut \mathbf{C} along the negative real axis (or along any other half-line from 0 to ∞).

Example 7.10. Powers

 $P_k(r,\theta) = r^{1/n} e^{i\theta/n} e^{2\pi i k/n}$

(for r > 0 and $\theta \in \mathbf{R}$) Then $P_k(r, \theta + 2\pi) = P_{k+1}(r, \theta)$ and $P_{n-1}(r, \theta + 2\pi)$ so there are really n branches of the function $z^{1/n}$, and they are permuted cyclically as we pass around a circle around 0 and θ goes from 0 to 2π .

Example 7.11.

$$f(z) = \sqrt{(z-1)(z+1)}$$

The set of branch points is $\{-1, 1\}$. Moving around a circular contour that winds around +1 or -1 with winding number 1, but not around both, will cause the function to pick up a factor of -1. To stop this from happening, we cut the plane along the line between 1 and -1. Along any contour in the cut plane, f is single valued.

Example 7.12.

$$f(z) = \log(\frac{z+i}{z-i})$$

Branch points $+i, -i, \infty$

Cut the plane from i to ∞ along the positive y axis. Cut the plane from -i to ∞ along the negative y axis. Along the cut plane,

$$\frac{i}{2}\log\left(\frac{z+i}{z-i}\right)$$

is single valued. This is the definition of $\arctan(z)$ (the antiderivative of $\frac{1}{z^2+1}$): it is not single valued in the whole plane or upper half plane, only in the cut plane.