7. CAUCHY’S RESIDUE THEOREM

Definition 7.1. If f is holomorphic on D'(a;r) with a pole at a, the
residue of f at a is the coefficient c_y of (z — a)™' in the Laurent
expansion of f about a (denoted Res(f(z);a)).

Lemma 7.2. Suppose f is holomorphic inside and on a positively ori-
ented contour v except at a C vy, where it has a pole. Then

/ f(2)dz = 2mic_;.

Proof: Choose r such that D(a;7) C I(y). Then

/f dz—/m)f(z)dz

(by deformation theory)
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_/ Z cn(z —a)"dz

Y&T) p=—m

= Z cn/ (z —a)"dz = 2mic_y.
n=-—m v(asr)

Theorem 7.3 (Cauchy residue formula). Suppose f is holomorphic
inside and on a positively oriented contour ~y except for a finite number
of poles at aq, ..., a,, inside v. Then

/f(z)dz = 27T@'ZRes(f(z) ar)

Theorem 7.4 (Zero-pole theorem). Suppose f is holomorphic inside
and on a positively oriented contour vy except for P poles and N zeros
inside vy, and that f is nonzero on . Then

L[,
o 7ﬂZ)dz_z\/—j.D

(counting according to multiplicities).

Proof of Cauchy residue formula:

Proof. Let f; be the principal part of the Laurent expansion of f around
ar. Then



2

has only removable singularities at ai,...,a,;,. Redefining it at the
poles ay, g is holomorphic inside and on . By Cauchy’s theorem,
J, 9(2)dz = 0. So by the previous Lemma [ f(2)dz = 32}%, [ fi(2)dz =

2mi Y )t Res(f(2); ak). O
Proof of zero-pole theorem:

Proof. The function f’/f is holomorphic inside and on -y except at poles
and zeros of f inside . If a is a zero of f of order m, then there is

a function g which is holomorphic and nonzero in some D(a;r) with
f(z) =(z—=a)"g(z) in D(a;r). Then

fiz)  omo )
fo) z—a 9o

7.1. Rouché’s Theorem.

Theorem 7.5 (Rouché). Suppose f and g are holomorphic inside and
on a contour v and suppose |f(z)| > |g(z)| on . Then f and f+ g
have the same number of zeros inside 7.

Proof of Rouché: Let t € [0,1]. Since |f(z)| > |g(2)| on v, (f +
tg)(z) # 0 for any z € 7. Assume WLOG 7 positively oriented. Define

L (e,
/7 G i) ™

By the zero-pole theorem, ¢(t) equals the number of zeros of f + tg
inside 7. ¢ is integer-valued; if it is continuous, it must be a constant.
So if ¢(0) = ¢(1), then the number of zeros of f is equal to the number
of zeros of f + g. To prove ¢ is continuous:

t—s (g'f = f'9)2) .
o0~ 00) =7 | Gt

Since a continuous function on a compact set attains its maximum and
its minimum, we can find positive numbers M and m such that for all
zen [ (df=F9)2) |< M, |g(z) [< M, | (f +1tg)(2) [= m. Then
| (f +59)2) [2[ (f +t9)(2) | = | s =t []g(2)] = m/2if |s —#] < 557
So for small enough |s — t|, by the estimation theorem, |¢(t) — ¢(s)| <
=sIMongth(y). So ¢ is continuous at ¢.

™nm

o(t) =

Comi




7.2. Zeros and residues.
Lemma 7.6.
Res(f(2);a) = lim, 4, (2 — a) f(2).

Proof. In D'(a;r), f(2) = > oo jcu(z —a)" so lim, ,,(z — a)f(a) =
C_1. U
simple pole of type I: g(z)(z — a) for g holomorphic in D(a;r),

Res(f(2);a) = g(a).
Simple pole of type II:

h, k holomorphic in D(a;r), h(a) # 0, k(a) =0, k'(a) # 0
Then h(a)
Res(f(z);a) = (o)

Multiple pole type I g(z)(z —a)~™ for g holo. in D(a;r):

1
Res(f(z);a) = (m—_l)!g(m_l)(a).
Multiple pole type II: Compute c_; in the Laurent expansion, or
convert to type L.

Example 7.1. How many zeros does f(z) = 2 + 2% — € have in the
upper half plane z € C|Im(z) > 0} ¢

Example 7.2. Take f(z) = 2+ 22, g(2) = —€'*, and define a semi-
circular contour I'gr with diameter 2R and centre 0. On [—R, R| (the
part of the contour on the real azis), |f(2)| > 2, |g(2)] = 1. On the
semicircular arc z = Re®,0 < 6 <,
f(z) =2+ R%*.
[f(2)] 2| |R**’| = 2 |= R* — 1
lg(z)] = e <1

(for sin() > 0.) So again |f(2)| > |g(2)|, so by Rouché f + g has the
same number of zeros as f, which is 1.

Example 7.3.
1 1

211 (z—i)(z+1)
1

1
Res.—i f(z) = 2 Res,— i f(z) = ~5

f(z) =
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Example 7.4.
1
Res:=o sin(z) =1
Example 7.5.
M) = @+ = -G -2 +2)
Res.—»f(2) = _ﬁ - _é’

1
(2 — 2i)(2i + 2i)

ReSzzzif(Z) =

7.3. Estimation of integrals.

7.3.1. 1. .
(1) [z1 + 22| < J21| + |22
(2) |z + - 2 D00 |2
(3) |21 + 22| > ||21] — |22
(4) |21+ + 20| > o] = D20, |2

7.4. Extra topic: Multifunctions.

Example 7.6. Examples of multifunctions:
(1) log(z) defined for z € C\ {0}
(2) f(z) =2 (a € C) defined for z € C\ {0}
(3) f(z) = log(p(2)/q(z)) defined except on the zeroes of p and q
(where p and q are polynomials)

Definition 7.7. A multi-valued function f(z) is the assignment to z
of a set of complex numbers [w(z)].

Example 7.7. Logarithm [log(z)] = {log|z| +i0 : 0 € [arg(2)]} (in
other words z = re?)

Example 7.8. Power [zY/"] = {|z|Y/"e*™™/"m € Z} (there are n
different values of m)

Definition 7.8. Let [w(2)] be a multivalued function. A branch point
of w is a point a € C such that for sufficiently small circles vy(a,r)
around a, it is not possible to choose a continuous f(z) of [w(z)] defin-
ing a continuous function on y(a,r).

Example 7.9. log(z) is single valued on C\ {z € R|z > 0}. Likewise
2% for any o € C since z* is defined as exp(alog(z)).



7.5. Logarithm. z = re®

log,, (1, 8) = log(r) + (0 + 27k)

is a continuous function of r and @ (r > 0 and 6 € R) Note that log,
do not define a continuous choice of log on C\ {0}. As we move along
a circle v centred at 0, we pass from log,, to log,; as 6 moves from 0
to 27. To stop this from happening, we cut C along the negative real
axis (or along any other half-line from 0 to o).

Example 7.10. Powers
Pk(r, 0) _ rl/neié/ne%rik/n

(forr >0 and 0 € R) Then Py(r,0 + 2r) = Pyy1(r,0) and P,_1(r,0 +
2m) so there are really n branches of the function z'/™, and they are

permuted cyclically as we pass around a circle around 0 and 6 goes from
0 to 2.

Example 7.11.

fz) =V (=-1(+1)
The set of branch points is {—1,1}. Moving around a circular contour
that winds around +1 or —1 with winding number 1, but not around
both, will cause the function to pick up a factor of —1. To stop this
from happening, we cut the plane along the line between 1 and —1.
Along any contour in the cut plane, f is single valued.

Example 7.12.
z+1

Z—1

f(z) = log(—)

Branch points +1, —i, 00
Cut the plane from 1 to oo along the positive y axis.
Cut the plane from —i to oo along the negative y axis.

Along the cut plane,
1 | zZ+1
—lo
2 & z—1

is single valued. This is the definition of arctan(z) (the antiderivative
of z2—1+1) it is not single valued in the whole plane or upper half plane,
only in the cut plane.




