6 Laurent’s Theorem

Theorem 6.1 Let A= {z: R < |z—a| < S} and suppose f is holomorphic
on A. Then

[ = S elz—a)
for z € A where
_ 1 f(w)
= 271 A(a;r) (U} - a)”“ dw

for R<r < S. The ¢, are unique.

Proof 6.1 WLOG a=0. Fiz z € A and choose P and Q) so that R < P <
|z| < @ < S. Choose 4 and 7; then

fo) = o [T a0

Fw—

(by Cauchy integral formula)

(by Cauchy’s theorem) Hence

fo - L / fw) L [ )

211 Jy(0,Q) W — 2 21t Jy(0;P) W — 2

1 > 2"
= 5. 7 d — 7/
2mi /y(O;Q) n; wntl f(w)dw 211 Jy(0;P) Z zm“

using the binomial expansion. Use the Uniform C’onvergence Theorem to
interchange summation and integration. This gives

Z < i / <wn+1 ) a

! Z <2m [Y(O;P) f (w)wmdw) Lme1

Use the deformation theorem to replace v(0;Q) and v(0; P) by v(a;7) as in
the statement.




Example 6.1

s holomorphic on Ay and As, where
A ={z:0<z] <1}
and
Ay ={z:|z| > 1}.
On Ay,

o

fRy=z"+(1-2)""= Y 2"

n=—1

On A,y, we have

fe)y=z"=-z"1-2"H""= > -

Example 6.2
1
f(Z) - Z(l . Z)Q
is holomorphic on 0 < |z — 1| < 1. On this region it is equal to
1 1 1
= 1—(z—1 — 1) — ...
(z— 121+ (z—1) @_1y( (z=1+(-1) )
So .
f)= > (=1)"(z-1)"
n=—2
Example 6.3
ese(z) = Y 2"
on 0 < |z| < 7. Since
sin(z) = z — 3l +

also



Example 6.4

cot(z) = (1 -2/ + .. ) (1/z42/31+...)

IS

(1422 (-1/2+ 1/6) + O(z")).

6.1 Singularities

Definition 6.2 A point a is a regular point of f if f is holomorphic at a. It
15 a singularity of f if a is a limit point of regular points which is not itself
reqular.

Definition 6.3 f has an isolated singularity at a if f is holomorphic in a
punctured disc D(a;r)\ {0}; if a is a singular point that does not satisfy this
condition, it is called a non-isolated singularity.

If f has an isolated singularity at a, f is holomorphic in the annulus {z :
0 < |z —a| < r} and has a unique Laurent expansion f(z) =300 c,(z —
a)". The singularity a is: removable singularity if ¢, = 0¥n < 0; pole of order
mif c_,, #0, ¢, = 0Vn < —m; isolated essential singularity if there does not
exist m such that ¢, = 0 Vn < —m.

In D'(a,r), f(z) =31 cu(z—a)” + 352 c(z —a)”
Definition 6.4 The principal part of the Laurent expansion is

-1

> ez —a)™

n=—oo

6.2 Zeros

Suppose f is holomorphic in D(a;r) and f(a) = 0. Assume f is not identi-
cally zero in D(a;r) (in other words f is not zero everywhere in D(a;r)).
Then by Taylor’s theorem,

fz) =2 enlz —a)”
for some m > —1,¢,, # 0.

The order of zero of f at a is m if and only if f(a) = f'(a) = ... =
fm=Y(a) =0 but f™(a) # 0.



Theorem 6.5 Suppose f is holomorphic in D(a;r). Then f has a zero of
order m at a if and only if lim, ,,(z — a) ™" f(z) = C for some constant

C #£0.

Theorem 6.6 (Theorem 2) Suppose f is holomorphic on D'(a;r). Then f
has a pole of order m at a if and only if

lim(z —a)"f(z) =D

z—a

for a monzero constant D.

Example 6.5 zsin(z) has a zero of order 2 at z = 0 and has zeros of order
1 at z=nm, n#0.

Proof of Theorem 2 = Suppose a is a pole of order m. For z € D(a;7),

z # a,

o0

f(z)= > elz—a)" e #0

n=-—m

In D'(a;7),
(z—a)"f(z) = ;)Cn—m<z —a)".

The series on the right hand side defines a function continuous at z = a.
Hence

lim(z —a)" f(2) = c_pm # 0.

z—a

By Laurent’s theorem,

where
= / _flw)
" 211 ~(a;s) (U) - CL)”+1
(for 0 < s <r). Weneed ¢, =0 (n < —m) and c_,, # 0. Since lim,_,,(z —
a)™f(z) = D # 0, there is § > 0 such that

dw

|((w —a)™f(w) — D| <e



where 0 < |w —a|] < 6. Take 0 < s < min(d,r). Then if |w — a| = s, then
|(w — a)™f(w)] < |D| + eHence(w — a) ™' f(w)] < (|D] +¢)s7™ "1 So
using the estimation theorem,

len| < (D] +€)s™7™.

If n < —m then s7" ™ can be made arbitrarily small, but ¢, is independent

of s so ¢,, = 0. Hence
(o]

fl2)= > calz—a)"

As in the proof of (=),
C_m =lim(z —a)"f(z) =D #0.

z—a

6.3 Behaviour near an isolated singularity

Case 1: Removable singularity. If f(z) = >0 ¢, (2 — a)™ in D'(a;4). then
f(z) = ¢o as z — a. Redefining f(a) to ¢y we find f is holomorphic in
D(a;r).

Example 6.6 f(z) = sin(z)

z

Case 2: Pole If f has a pole at a, then |f(z)| = o0 as z — a.

Case 3: Essential singularity:

Casorati- Weierstrass theorem (not proved): If f has an isolated essential
singularity at a, for any w € C there exists < a,, > such that a, — a and
f(a,) — w. In fact according to Picard’s theorem, in any D’(a,r), f assumes
every complex value except possibly one. For example, e!/? has an essential
singularity at 0; the value not assumed is 0.

Definition 6.7 The extended complex plane C is C U {co} (add an extra
point at 00 ).

Define this by identifying X
C=UUV/~

where U = C, V = C. On C\ {0}, identify U with V via u € U \ {0}
~v €V where v = 1/u. So as u — oo, v — 0 and as u — 0, v — oco. We
can also write C as {[z, w]}/ ~ where (z,w) ~ (Az, \w) for any A € C\ {0}.
Thus if z # 0, (z,w) ~ (1,w/z) and if w # 0, then (z,w) ~ (z/w, 1). These
are in correspondence with the sets U and V.

Uniqueness



Theorem 6.8 Suppose f is holomorphic on A with

= i_o:obn(z —a)"

Suppose also
Z cn(z —a)"
n=0
Then b,, = c,.
Proof 6.2 Assume a = 0. Choose r with R <r < S. Then

2ic, = / fw)w™" dw
~(05r

:/( waknldw

Or)k* 00

:/( waknldw—/ )Zb_ W
(0;r

OT’)k 0 m=—1

Using the theorem on uniform convergence to interchange the sum with
the integral,

2mic, = Z bk/ W dw = 2mib,,.

k=—00 (0,r)

6.4 Meromorphic functions

Definition 6.9 A C-valued function which is holomorphic in an open set
G C C except possibly for poles is called meromorphic in G.

Theorem 6.10 If f is holomorphic on C, then f s constant.

(Proof: Use Liouville’s theorem)

Theorem 6.11 If f is meromorphic on C then f is a rational function
p(2)/q(2) for some polynomials p and q.

Example 6.7 1. (z —a)™2 has a double pole at z =1



2. (1 —cos(z))/2?% is holomorphic except at z = 0. At z =0, 1 —cos(z) =
22/2 + ... so the singularity is removable.

3. Sinl(z) = z—z3}3!+... = z(l—z21/3!+...) so there is a stmple pole at 0.

cos(z)/sin(z) = (1 — 22/2+...)(1/2)(1 + 2%/3! + O(z"))
cot(z) has a simple pole at z =0 Similarly since cot(z — km) = cot(z),
cot(z) has a simple pole at k.

5. sin(1/z) = fzo(—l)"% has an isolated essential singularity at 0.

6. m is singular when sin(1/z) = 0, in other words when 1/z = km or
z = 1/(km) for some integer k # 0.

Remark 6.1 Ifa is a limit point of the singularities of a function defined on
a subset of C, then f cannot be holomorphic on any punctured disk with centre
at a, and cannot have a Laurent expansion about a. So a is not an isolated
singularity or a regqular point; it is a non-isolated essential singularity.

Example 6.8
1

=)= z3cos(1/z)

This has poles at 1/z = (2n+1)7/2, where cos(1/z) has zeros (in other words
z = m) This expression tends to 0 as n — oo so 0 is a limit point of
the poles, or a non-isolated essential singularity. It follows that f does not
have a Laurent expansion about 0.

If f is meromorphic in an open subset G of C, then the set of poles of f
has no limit point in GG, and f can have at most finitely many poles in any
closed subset of G.

6.5 Behaviour of functions at oo

Zeros and poles of a function f at oo are studied by studying the function
f(w) = f(1/w). f has a pole of order m at oo if and only if f has a pole of
order m at 0.
f has a zero of order m at oo if and only if f has a zero of order m at 0.
Ezxamples:



~

=0, f has a pole of order 3.

f(z) = %si %.f(w)—w sin(w). f(w) has a zero of order 3 at w = 0.

f(2) = zsin(1/z)
f (w) = sin(w)/w has a removable singularity at w = 0 if and only if
z = o0, in other words w = 0.

Example 6.9
(2 — 1)2 cos(mz)

1(z) = (22 — 1)(22 + 1)%sin®(72)
The denominator is zero at z =1/2, z = +i and z = k € Z.
z2=1/2:

(22 +1)°sin®(72) £ 0

and (z —1)% # 0 but cos(rz) = 0. So z = 1/2 is a removable singularity.
z=4i:22—1#0,sin®(72) #0, 2 —1#0, cos(mz) #0. So 22+ 1=
(z41)(z —1i) and z = £i are poles of f(z) of order 5.
z=k,k#1:cos(rz) #0, z—1#0
sin(rz) = (mz — wk)(1 + higherorder)
5022 —1#0,22+1#0.
So z =k is a pole of order 3, and z =1 is a pole of order 1.

6.6 Meromorphic functions

Definition 6.12 A C-valued function which is holomorphic in an open set
G C C except possibly for poles is called meromorphic in G.

Theorem 6.13 If f is holomorphic on C, then f is constant.

(Proof: Use Liouville’s theorem)

Theorem 6.14 If f is meromorphic on C then f is a rational function
p(2)/q(z) for some polynomials p and q.

Example 6.10 1. (2 —a)~2 has a double pole at z =1

8



2. (1 —cos(z))/2?% is holomorphic except at z = 0. At z =0, 1 —cos(z) =
22/2 + ... so the singularity is removable.

3. Sinl(z) = 2_23}3!+m = 2(1_221/3!4_.“) so there is a simple pole at 0.

cos(z)/sin(z) = (1 — 22/2+...)(1/2)(1 + 2%/3! + O(z"))

cot(z) has a simple pole at z =0 Similarly since cot(z — km) = cot(z),
cot(z) has a simple pole at k.
(

5. sin(1/z) = ff’zo(—l)"% has an isolated essential singularity at 0.
6. —+— is singular when sin(1/z) = 0, in other words when 1/z = kr or

)
z = 1/(km) for some integer k # 0.

Remark 6.2 Ifa is a limit point of the singularities of a function defined on
a subset of C, then f cannot be holomorphic on any punctured disk with centre
at a, and cannot have a Laurent expansion about a. So a is not an isolated
singularity or a reqular point; it is a non-isolated essential singularity.

Example 6.11
1

()= z3cos(1/z)

This has poles at 1/z = (2n+1)w /2, where cos(1/z) has zeros (in other words
z = (Qnﬁ ). This expression tends to 0 as n — 0o so 0 is a limit point of
the poles, or a non-isolated essential singularity. It follows that f does not

have a Laurent expansion about 0.

If f is meromorphic in an open subset G of C, then the set of poles of f
has no limit point in GG, and f can have at most finitely many poles in any
closed subset of G.

Behaviour of functions at oo

Zeros and poles of a function f at oo are studied by studying the function
f(w) = f(1/w). f has a pole of order m at oo if and only if f has a pole of
order m at 0.

f has a zero of order m at oo if and only if f has a zero of order m at 0.
Examples:



flw) = f(1/2) = w™®
At w =0, f has a pole of order 3.

2. f(z) = &sinl. f(w) = w?sin(w). f(w) has a zero of order 3 at w = 0.
3. f(z) = zsin(1/z) f(w) = sin(w)/w has a removable singularity at
w = 0 if and only if z = co.
Example 6.12
2z —a)?cos(mz)
f(Z) = _< 2) 5 aind
(22 — 1)(2%2 + 1)%sin’(7z)

The denominator is zero at z = 1/2, z = +i and z = k € Z.

z=1/2:
(22 +1)°sin*(72) £ 0

and (z — 1)? # 0 but cos(7z) = 0. So z = 1/2 is a removable singularity.

z=4i 22— 140, sin’(72) #0, 2 —1%#0, cos(mz) #0. So 22 +1 =
(z+14)(z — i) and z = =i are poles of F(z) of order 5.

2=k k#1: cos(mz) #0, z—1 # 0sin(nz) = (mz—7k)(1+higherorder)
5022z —1#0,224+1+#0. So z =k is a pole of order 3, and z = 1 is a pole
of order 1.

Example 6.13 f(z) = zsin(z) has zeros at z = nw. So 1/f has poles at
z=km. At 2 =0, sin(z) =2z — 23/3! + ... = 2(1 — 22/3! + O(21)) s0

1/sin(z) = 1/2(1=2%/314+0(z*) " = (1/2)(14+(2* /314 . )+ (22 /3!+. . )+ ..
= (1/2)(1 +2%/3! + O(z"))

So 1/(zsin(z)) has a double pole at z=0. At z = km, k # 0,
sin(z) = (—1)Fsin(z — kn)

and
z=kn+ (2 —km)
% 1 1 1 & k
z—km
- - 1) n
z  km (14 (2 — km)/km) lm,;)< ' km )

So 1/(zsin(z)) has a simple pole at z = km when k # 0.

10



Example 6.14
f(2) = cot(z) = cos(z)/ sin(z)
Since sin(z) = 0 when z = kr and cos(kmw) # 0, and sin(z) has a simple zero

at z =k,

sin(z) = (z — kn)(1 — (2 — km)?/3! 4+ ..)

we find cot(z) has simple poles at these values.

Non-isolated singularities are always essential. (Non-isolated singularity
means there is no punctured disk {z : 0 < |z — a| < r} where f is holomor-
phic.) If a is an isolated singularity (f is holomorphic in D’(a;r) for some
1), there is always a Laurent expansion

o0

f2)= Y elz—a)

n=—oo

(i) Isolated essential singularity: Infinitely many nonzero ¢; for j <0
(ii) Pole: f(2) = c_m(z —a) ™ + c_pmy1(z — a)™™ + ... of order m.
(iii) Removable singularity: All ¢, =0 if n < 0.

1 1 1

22sin(z)  22(z—23/31+ 25/5! +...)  23(1— A)

where A = 22/3! — z4/5! +...
= —1 + A+ A%+
23(1 o)

Expand 1+ A + ... to order 22 in z.
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