6 Laurent's Theorem

Theorem 6.1 Let $A=\{z: R<|z-a|<S\}$ and suppose f is holomorphic on A. Then

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

for $z \in A$ where

$$
c_{n}=\frac{1}{2 \pi i} \int_{\gamma(a ; r)} \frac{f(w)}{(w-a)^{n+1}} d w
$$

for $R<r<S$. The c_{n} are unique.
Proof 6.1 WLOG $a=0$. Fix $z \in A$ and choose P and Q so that $R<P<$ $|z|<Q<S$. Choose $\tilde{\gamma}$ and $\tilde{\tilde{\gamma}}$; then

$$
f(z)=\frac{1}{2 \pi i} \int_{\tilde{\gamma}} \frac{f(w)}{w-z} d w
$$

(by Cauchy integral formula)

$$
0=\frac{1}{2 \pi i} \int_{\tilde{\tilde{\gamma}}} \frac{f(w)}{w-z} d w
$$

(by Cauchy's theorem) Hence

$$
\begin{gathered}
f(z)=\frac{1}{2 \pi i} \int_{\gamma(0 ; Q)} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{\gamma(0 ; P)} \frac{f(w)}{w-z} d w \\
=\frac{1}{2 \pi i} \int_{\gamma(0 ; Q)} \sum_{n=0}^{\infty} \frac{z^{n}}{w^{n+1}} f(w) d w-\frac{1}{2 \pi i} \int_{\gamma(0 ; P)} \sum_{m=0}^{\infty} \frac{-w^{m}}{z^{m+1}} f(w) d w
\end{gathered}
$$

using the binomial expansion. Use the Uniform Convergence Theorem to interchange summation and integration. This gives

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \int_{\gamma(0 ; Q)}\left(\frac{f(w)}{w^{n+1}} d w\right) z^{n} \\
& +\sum_{m=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma(0 ; P)} f(w) w^{m} d w\right) z^{-m-1} .
\end{aligned}
$$

Use the deformation theorem to replace $\gamma(0 ; Q)$ and $\gamma(0 ; P)$ by $\gamma(a ; r)$ as in the statement.

Example 6.1

$$
f(z)=\frac{1}{z(1-z)}
$$

is holomorphic on A_{1} and A_{2}, where

$$
A_{1}=\{z: 0<|z|<1\}
$$

and

$$
A_{2}=\{z:|z|>1\} .
$$

On A_{1},

$$
f(z)=z^{-1}+(1-z)^{-1}=\sum_{n=-1}^{\infty} z^{n}
$$

On A_{2}, we have

$$
f(z)=z^{-1}-z^{-1}\left(1-z^{-1}\right)^{-1}=\sum_{n=-\infty}^{-2}-z^{n} .
$$

Example 6.2

$$
f(z)=\frac{1}{z(1-z)^{2}}
$$

is holomorphic on $0<|z-1|<1$. On this region it is equal to

$$
\frac{1}{(z-1)^{2}} \frac{1}{1+(z-1)}=\frac{1}{(z-1)^{2}}\left(1-(z-1)+(z-1)^{2}-\ldots\right)
$$

So

$$
f(z)=\sum_{n=-2}^{\infty}(-1)^{n}(z-1)^{n}
$$

Example 6.3

$$
\csc (z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}
$$

on $0<|z|<\pi$. Since

$$
\sin (z)=z-\frac{z^{3}}{3!}+\ldots
$$

also

$$
\begin{aligned}
\csc (z) & \left.=\frac{1}{z}\left(1-\frac{\left(z^{2}\right)}{3!}+O\left(z^{4}\right)\right)^{-1}\right) \\
& =\frac{1}{z}\left(1+\frac{z^{2}}{3!}+\ldots\right)
\end{aligned}
$$

Example 6.4

$$
\begin{gathered}
\cot (z)=\left(1-z^{2} / z!+\ldots\right)(1 / z+z / 3!+\ldots) \\
\quad=\frac{1}{z}\left(1+z^{2}(-1 / 2+1 / 6)+O\left(z^{4}\right)\right)
\end{gathered}
$$

6.1 Singularities

Definition 6.2 A point a is a regular point of f if f is holomorphic at a. It is a singularity of f if a is a limit point of regular points which is not itself regular.

Definition $6.3 f$ has an isolated singularity at a if f is holomorphic in a punctured disc $D(a ; r) \backslash\{0\}$; if a is a singular point that does not satisfy this condition, it is called a non-isolated singularity.

If f has an isolated singularity at a, f is holomorphic in the annulus $\{z$: $0<|z-a|<r\}$ and has a unique Laurent expansion $f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-$ $a)^{n}$. The singularity a is: removable singularity if $c_{n}=0 \forall n<0$; pole of order m if $c_{-m} \neq 0, c_{n}=0 \forall n<-m$; isolated essential singularity if there does not exist m such that $c_{n}=0 \forall n<-m$.

In $D^{\prime}(a, r), f(z)=\sum_{n=-\infty}^{-1} c_{n}(z-a)^{n}+\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$
Definition 6.4 The principal part of the Laurent expansion is

$$
\sum_{n=-\infty}^{-1} c_{n}(z-a)^{n}
$$

6.2 Zeros

Suppose f is holomorphic in $D(a ; r)$ and $f(a)=0$. Assume f is not identically zero in $D(a ; r)$ (in other words f is not zero everywhere in $D(a ; r)$).

Then by Taylor's theorem,

$$
f(z)=\sum_{n=m}^{\infty} c_{m}(z-a)^{m}
$$

for some $m \geq-1, c_{m} \neq 0$.
The order of zero of f at a is m if and only if $f(a)=f^{\prime}(a)=\ldots=$ $f^{(m-1)}(a)=0$ but $f^{(m)}(a) \neq 0$.

Theorem 6.5 Suppose f is holomorphic in $D(a ; r)$. Then f has a zero of order m at a if and only if $\lim _{z \rightarrow a}(z-a)^{-m} f(z)=C$ for some constant $C \neq 0$.

Theorem 6.6 (Theorem 2) Suppose f is holomorphic on $D^{\prime}(a ; r)$. Then f has a pole of order m at a if and only if

$$
\lim _{z \rightarrow a}(z-a)^{m} f(z)=D
$$

for a nonzero constant D.
Example $6.5 z \sin (z)$ has a zero of order 2 at $z=0$ and has zeros of order 1 at $z=n \pi, n \neq 0$.

Proof of Theorem 2 \Longrightarrow Suppose a is a pole of order m. For $z \in D(a ; r)$, $z \neq a$,

$$
f(z)=\sum_{n=-m}^{\infty} c_{n}(z-a)^{n}, c_{-m} \neq 0
$$

In $D^{\prime}(a ; r)$,

$$
(z-a)^{m} f(z)=\sum_{n=0}^{\infty} c_{n-m}(z-a)^{n}
$$

The series on the right hand side defines a function continuous at $z=a$. Hence

$$
\lim _{z \rightarrow a}(z-a)^{n} f(z)=c_{-m} \neq 0
$$

By Laurent's theorem,

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

where

$$
c_{n}=\frac{1}{2 \pi i} \int_{\gamma(a ; s)} \frac{f(w)}{(w-a)^{n+1}} d w
$$

(for $0<s<r$). We need $c_{n}=0(n<-m)$ and $c_{-m} \neq 0$. Since $\lim _{z \rightarrow a}(z-$ a) ${ }^{m} f(z)=D \neq 0$, there is $\delta>0$ such that

$$
\left|(w-a)^{m} f(w)-D\right|<\epsilon
$$

where $0<|w-a|<\delta$. Take $0<s<\min (\delta, r)$. Then if $|w-a|=s$, then $\left|(w-a)^{m} f(w)\right| \leq|D|+\epsilon \operatorname{Hence}(w-a)^{-n-1} f(w) \mid \leq(|D|+\epsilon) s^{-m-n-1}$. So using the estimation theorem,

$$
\left|c_{n}\right| \leq(|D|+\epsilon) s^{-n-m}
$$

If $n<-m$ then s^{-n-m} can be made arbitrarily small, but c_{n} is independent of s so $c_{n}=0$. Hence

$$
f(z)=\sum_{n=-m}^{\infty} c_{n}(z-a)^{n}
$$

As in the proof of (\Rightarrow),

$$
c_{-m}=\lim _{z \rightarrow a}(z-a)^{m} f(z)=D \neq 0 .
$$

6.3 Behaviour near an isolated singularity

Case 1: Removable singularity. If $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ in $D^{\prime}(a ; 4)$. then $f(z) \rightarrow c_{0}$ as $z \rightarrow a$. Redefining $f(a)$ to c_{0} we find f is holomorphic in $D(a ; r)$.
Example 6.6 $f(z)=\frac{\sin (z)}{z}$
Case 2: Pole If f has a pole at a, then $|f(z)| \rightarrow \infty$ as $z \rightarrow a$.
Case 3: Essential singularity:
Casorati-Weierstrass theorem (not proved): If f has an isolated essential singularity at a, for any $w \in \mathbf{C}$ there exists $<a_{n}>$ such that $a_{n} \rightarrow a$ and $f\left(a_{n}\right) \rightarrow w$. In fact according to Picard's theorem, in any $D^{\prime}(a, r), f$ assumes every complex value except possibly one. For example, $e^{1 / z}$ has an essential singularity at 0 ; the value not assumed is 0 .

Definition 6.7 The extended complex plane $\hat{\mathbf{C}}$ is $\mathbf{C} \cup\{\infty\}$ (add an extra point at ∞).
Define this by identifying

$$
\hat{\mathbf{C}}=U \cup V / \sim
$$

where $U=\mathbf{C}, V=\mathbf{C}$. On $\mathbf{C} \backslash\{\mathbf{0}\}$, identify U with V via $u \in U \backslash\{0\}$ $\sim v \in V$ where $v=1 / u$. So as $u \rightarrow \infty, v \rightarrow 0$ and as $u \rightarrow 0, v \rightarrow \infty$. We can also write $\hat{\mathbf{C}}$ as $\{[z, w]\} / \sim$ where $(z, w) \sim(\lambda z, \lambda w)$ for any $\lambda \in \mathbf{C} \backslash\{\mathbf{0}\}$. Thus if $z \neq 0,(z, w) \sim(1, w / z)$ and if $w \neq 0$, then $(z, w) \sim(z / w, 1)$. These are in correspondence with the sets U and V.

Uniqueness

Theorem 6.8 Suppose f is holomorphic on A with

$$
f(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n} .
$$

Suppose also

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

Then $b_{n}=c_{n}$.
Proof 6.2 Assume $a=0$. Choose r with $R<r<S$. Then

$$
\begin{gathered}
2 \pi i c_{n}=\int_{\gamma(0 ; r)} f(w) w^{-n-1} d w \\
=\int_{\gamma(0 ; r)} \sum_{k=-\infty}^{\infty} b_{k} w^{k-n-1} d w \\
=\int_{\gamma(0 ; r)} \sum_{k=0}^{\infty} b_{k} w^{k-n-1} d w=\int_{\gamma(0 ; r)} \sum_{m=-1}^{\infty} b_{-m} w^{-m-n-1} d w
\end{gathered}
$$

Using the theorem on uniform convergence to interchange the sum with the integral,

$$
2 \pi i c_{n}=\sum_{k=-\infty}^{\infty} b_{k} \int_{\gamma(0, r)} w^{k-n-1} d w=2 \pi i b_{n}
$$

6.4 Meromorphic functions

Definition 6.9 A C-valued function which is holomorphic in an open set $G \subset \hat{\mathbf{C}}$ except possibly for poles is called meromorphic in G.

Theorem 6.10 If f is holomorphic on $\hat{\mathbf{C}}$, then f is constant.
(Proof: Use Liouville's theorem)
Theorem 6.11 If f is meromorphic on $\hat{\mathbf{C}}$ then f is a rational function $p(z) / q(z)$ for some polynomials p and q.

Example 6.7 1. $(z-a)^{-2}$ has a double pole at $z=1$
2. $(1-\cos (z)) / z^{2}$ is holomorphic except at $z=0$. At $z=0,1-\cos (z)=$ $z^{2} / 2+\ldots$ so the singularity is removable.
3. $\frac{1}{\sin (z)}=\frac{1}{z-z^{3} / 3!+\ldots}=\frac{1}{z\left(1-z^{2} / 3!+\ldots\right)}$ so there is a simple pole at 0 .
4.

$$
\cos (z) / \sin (z)=\left(1-z^{2} / 2+\ldots\right)(1 / z)\left(1+z^{2} / 3!+O\left(z^{4}\right)\right)
$$

$\cot (z)$ has a simple pole at $z=0$ Similarly since $\cot (z-k \pi)=\cot (z)$, $\cot (z)$ has a simple pole at $k \pi$.
5. $\sin (1 / z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{-(2 n+1)}}{(2 n+1)!}$ has an isolated essential singularity at 0 .
6. $\frac{1}{\sin (1 / z)}$ is singular when $\sin (1 / z)=0$, in other words when $1 / z=k \pi$ or $z=1 /(k \pi)$ for some integer $k \neq 0$.

Remark 6.1 If a is a limit point of the singularities of a function defined on a subset of \mathbf{C}, then f cannot be holomorphic on any punctured disk with centre at a, and cannot have a Laurent expansion about a. So a is not an isolated singularity or a regular point; it is a non-isolated essential singularity.

Example 6.8

$$
f(z)=\frac{1}{z^{3} \cos (1 / z)}
$$

This has poles at $1 / z=(2 n+1) \pi / 2$, where $\cos (1 / z)$ has zeros (in other words $\left.z=\frac{2}{(2 n+1) \pi}\right)$. This expression tends to 0 as $n \rightarrow \infty$ so 0 is a limit point of the poles, or a non-isolated essential singularity. It follows that f does not have a Laurent expansion about 0.

If f is meromorphic in an open subset G of \tilde{C}, then the set of poles of f has no limit point in G, and f can have at most finitely many poles in any closed subset of G.

6.5 Behaviour of functions at ∞

Zeros and poles of a function f at ∞ are studied by studying the function $\hat{f}(w)=f(1 / w)$. f has a pole of order m at ∞ if and only if \hat{f} has a pole of order m at 0 .
f has a zero of order m at ∞ if and only if \hat{f} has a zero of order m at 0. Examples:
1.

$$
\begin{gathered}
f(z)=z^{3} \\
\hat{f}(w)=f(1 / 2)=w^{-3}
\end{gathered}
$$

At $w=0, \hat{f}$ has a pole of order 3 .
2. $f(z)=\frac{1}{z^{2}} \sin \frac{1}{z} \cdot \hat{f}(w)=w^{2} \sin (w) \cdot \hat{f}(w)$ has a zero of order 3 at $w=0$.
3. $f(z)=z \sin (1 / z)$
$\hat{f}(w)=\sin (w) / w$ has a removable singularity at $w=0$ if and only if $z=\infty$, in other words $w=0$.

Example 6.9

$$
f(z)=\frac{(z-1)^{2} \cos (\pi z)}{(2 z-1)\left(z^{2}+1\right)^{5} \sin ^{3}(\pi z)}
$$

The denominator is zero at $z=1 / 2, z= \pm i$ and $z=k \in \mathbf{Z}$.
$z=1 / 2:$

$$
\left(z^{2}+1\right)^{5} \sin ^{3}(\pi z) \neq 0
$$

and $(z-1)^{2} \neq 0$ but $\cos (\pi z)=0$. So $z=1 / 2$ is a removable singularity.
$z= \pm i: 2 z-1 \neq 0, \sin ^{3}(\pi z) \neq 0, z-1 \neq 0, \cos (\pi z) \neq 0$. So $z^{2}+1=$ $(z+i)(z-i)$ and $z= \pm i$ are poles of $f(z)$ of order 5 .
$z=k, k \neq 1: \cos (\pi z) \neq 0, z-1 \neq 0$
$\sin (\pi z)=(\pi z-\pi k)(1+$ higherorder $)$
so $2 z-1 \neq 0, z^{2}+1 \neq 0$.
So $z=k$ is a pole of order 3 , and $z=1$ is a pole of order 1 .

6.6 Meromorphic functions

Definition 6.12 A C-valued function which is holomorphic in an open set $G \subset \mathbf{C}$ except possibly for poles is called meromorphic in G.

Theorem 6.13 If f is holomorphic on $\tilde{\mathbf{C}}$, then f is constant.
(Proof: Use Liouville's theorem)
Theorem 6.14 If f is meromorphic on $\hat{\mathbf{C}}$ then f is a rational function $p(z) / q(z)$ for some polynomials p and q.

Example 6.10 1. $(z-a)^{-2}$ has a double pole at $z=1$
2. $(1-\cos (z)) / z^{2}$ is holomorphic except at $z=0$. At $z=0,1-\cos (z)=$ $z^{2} / 2+\ldots$ so the singularity is removable.
3. $\frac{1}{\sin (z)}=\frac{1}{z-z^{3} / 3!+\ldots}=\frac{1}{z\left(1-z^{2} / 3!+\ldots\right)}$ so there is a simple pole at 0 .

$$
\begin{equation*}
\cos (z) / \sin (z)=\left(1-z^{2} / 2+\ldots\right)(1 / z)\left(1+z^{2} / 3!+O\left(z^{4}\right)\right) \tag{4.}
\end{equation*}
$$

$\cot (z)$ has a simple pole at $z=0$ Similarly since $\cot (z-k \pi)=\cot (z)$, $\cot (z)$ has a simple pole at $k \pi$.
5. $\sin (1 / z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{-(2 n+1)}}{(2 n+1)!}$ has an isolated essential singularity at 0 .
6. $\frac{1}{\sin (1 / z)}$ is singular when $\sin (1 / z)=0$, in other words when $1 / z=k \pi$ or $z=1 /(k \pi)$ for some integer $k \neq 0$.

Remark 6.2 If a is a limit point of the singularities of a function defined on a subset of \mathbf{C}, then f cannot be holomorphic on any punctured disk with centre at a, and cannot have a Laurent expansion about a. So a is not an isolated singularity or a regular point; it is a non-isolated essential singularity.

Example 6.11

$$
f(z)=\frac{1}{z^{3} \cos (1 / z)}
$$

This has poles at $1 / z=(2 n+1) \pi / 2$, where $\cos (1 / z)$ has zeros (in other words $\left.z=\frac{2}{(2 n+1) \pi}\right)$. This expression tends to 0 as $n \rightarrow \infty$ so 0 is a limit point of the poles, or a non-isolated essential singularity. It follows that f does not have a Laurent expansion about 0.

If f is meromorphic in an open subset G of \tilde{C}, then the set of poles of f has no limit point in G, and f can have at most finitely many poles in any closed subset of G.

Behaviour of functions at ∞
Zeros and poles of a function f at ∞ are studied by studying the function $\hat{f}(w)=f(1 / w) . f$ has a pole of order m at ∞ if and only if \hat{f} has a pole of order m at 0 .
f has a zero of order m at ∞ if and only if \hat{f} has a zero of order m at 0 . Examples:
1.

$$
\begin{gathered}
f(z)=z^{3} \\
\hat{f}(w)=f(1 / 2)=w^{-3}
\end{gathered}
$$

At $w=0, \hat{f}$ has a pole of order 3 .
2. $f(z)=\frac{1}{z^{2}} \sin \frac{1}{z} \cdot \hat{f}(w)=w^{2} \sin (w) \cdot \hat{f}(w)$ has a zero of order 3 at $w=0$.
3. $f(z)=z \sin (1 / z) \hat{f}(w)=\sin (w) / w$ has a removable singularity at $w=0$ if and only if $z=\infty$.

Example 6.12

$$
f(z)=\frac{(z-a)^{2} \cos (\pi z)}{(2 z-1)\left(z^{2}+1\right)^{5} \sin ^{3}(\pi z)}
$$

The denominator is zero at $z=1 / 2, z= \pm i$ and $z=k \in \mathbf{Z}$.
$z=1 / 2:$

$$
\left(z^{2}+1\right)^{5} \sin ^{3}(\pi z) \neq 0
$$

and $(z-1)^{2} \neq 0$ but $\cos (\pi z)=0$. So $z=1 / 2$ is a removable singularity.
$z= \pm i: 2 z-1 \neq 0, \sin ^{3}(\pi z) \neq 0, z-1 \neq 0, \cos (\pi z) \neq 0$. So $z^{2}+1=$ $(z+i)(z-i)$ and $z= \pm i$ are poles of $F(z)$ of order 5 .
$z=k, k \neq 1: \cos (\pi z) \neq 0, z-1 \neq 0 \sin (\pi z)=(\pi z-\pi k)(1+$ higherorder $)$ so $2 z-1 \neq 0, z^{2}+1 \neq 0$. So $z=k$ is a pole of order 3 , and $z=1$ is a pole of order 1 .

Example $6.13 f(z)=z \sin (z)$ has zeros at $z=n \pi$. So $1 / f$ has poles at $z=k \pi$. At $z=0, \sin (z)=z-z^{3} / 3!+\ldots=z\left(1-z^{2} / 3!+O\left(z^{4}\right)\right)$ so $1 / \sin (z)=1 / z\left(1-z^{2} / 3!+O\left(z^{4}\right)\right)^{-1}=(1 / z)\left(1+\left(z^{2} / 3!+\ldots\right)+\left(z^{2} / 3!+\ldots\right)^{2}+\ldots\right.$ $=(1 / z)\left(1+z^{2} / 3!+O\left(z^{4}\right)\right)$
So $1 /(z \sin (z))$ has a double pole at $z=0$. At $z=k \pi, k \neq 0$,

$$
\sin (z)=(-1)^{k} \sin (z-k \pi)
$$

and

$$
z=k \pi+(z-k \pi)
$$

So

$$
\frac{1}{z}=\frac{1}{k \pi(1+(z-k \pi) / k \pi)}=\frac{1}{k \pi} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z-k \pi}{k \pi}\right)^{n}
$$

So $1 /(z \sin (z))$ has a simple pole at $z=k \pi$ when $k \neq 0$.

Example 6.14

$$
f(z)=\cot (z)=\cos (z) / \sin (z)
$$

Since $\sin (z)=0$ when $z=k \pi$ and $\cos (k \pi) \neq 0$, and $\sin (z)$ has a simple zero at $z=k \pi$,

$$
\sin (z)=(z-k \pi)\left(1-(z-k \pi)^{2} / 3!+\ldots\right)
$$

we find $\cot (z)$ has simple poles at these values.
Non-isolated singularities are always essential. (Non-isolated singularity means there is no punctured disk $\{z: 0 \leq|z-a|<r\}$ where f is holomorphic.) If a is an isolated singularity (f is holomorphic in $D^{\prime}(a ; r)$ for some r), there is always a Laurent expansion

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

(i) Isolated essential singularity: Infinitely many nonzero c_{j} for $j<0$
(ii) Pole: $f(z)=c_{-m}(z-a)^{-m}+c_{-m+1}(z-a)^{-m+1}+\ldots$ of order m.
(iii) Removable singularity: All $c_{n}=0$ if $n<0$.

$$
\frac{1}{z^{2} \sin (z)}=\frac{1}{z^{2}\left(z-z^{3} / 3!+z^{5} / 5!+\ldots\right)}=\frac{1}{z^{3}(1-A)}
$$

where $A=z^{2} / 3!-z^{4} / 5!+\ldots$

$$
=\frac{1}{z^{3}}\left(1+A+A^{2}+\ldots\right)
$$

Expand $1+A+\ldots$ to order z^{2} in z.

