
6 Laurent’s Theorem

Theorem 6.1 Let A = {z : R < |z − a| < S} and suppose f is holomorphic
on A. Then

f(z) =
∞∑

n=−∞
cn(z − a)n

for z ∈ A where

cn =
1

2πi

∫
γ(a;r)

f(w)

(w − a)n+1
dw

for R < r < S. The cn are unique.

Proof 6.1 WLOG a = 0. Fix z ∈ A and choose P and Q so that R < P <
|z| < Q < S. Choose γ̃ and ˜̃γ; then

f(z) =
1

2πi

∫
γ̃

f(w)

w − z
dw

(by Cauchy integral formula)

0 =
1

2πi

∫
˜̃γ

f(w)

w − z
dw

(by Cauchy’s theorem) Hence

f(z) =
1

2πi

∫
γ(0;Q)

f(w)

w − z
dw − 1

2πi

∫
γ(0;P )

f(w)

w − z
dw

=
1

2πi

∫
γ(0;Q)

∞∑
n=0

zn

wn+1
f(w)dw − 1

2πi

∫
γ(0;P )

∞∑
m=0

−wm

zm+1
f(w)dw

using the binomial expansion. Use the Uniform Convergence Theorem to
interchange summation and integration. This gives

f(z) =
∞∑
n=0

1

2πi

∫
γ(0;Q)

(
f(w)

wn+1
dw

)
zn

+
∞∑
m=0

(
1

2πi

∫
γ(0;P )

f(w)wmdw

)
z−m−1.

Use the deformation theorem to replace γ(0;Q) and γ(0;P ) by γ(a; r) as in
the statement.
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Example 6.1

f(z) =
1

z(1− z)

is holomorphic on A1 and A2, where

A1 = {z : 0 < |z| < 1}

and
A2 = {z : |z| > 1}.

On A1,

f(z) = z−1 + (1− z)−1 =
∞∑

n=−1
zn

On A2, we have

f(z) = z−1 − z−1(1− z−1)−1 =
−2∑

n=−∞
−zn.

Example 6.2

f(z) =
1

z(1− z)2

is holomorphic on 0 < |z − 1| < 1. On this region it is equal to

1

(z − 1)2
1

1 + (z − 1)
=

1

(z − 1)2

(
1− (z − 1) + (z − 1)2 − . . .

)
So

f(z) =
∞∑

n=−2
(−1)n(z − 1)n.

Example 6.3

csc(z) =
∞∑

n=−∞
cnz

n

on 0 < |z| < π. Since

sin(z) = z − z3

3!
+ . . .

also

csc(z) =
1

z

(
1− (z2)

3!
+O(z4))−1

)

=
1

z

(
1 +

z2

3!
+ . . .

)
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Example 6.4

cot(z) =
(
1− z2/z! + . . .

)
(1/z + z/3! + . . .)

=
1

z

(
1 + z2 (−1/2 + 1/6) +O(z4)

)
.

6.1 Singularities

Definition 6.2 A point a is a regular point of f if f is holomorphic at a. It
is a singularity of f if a is a limit point of regular points which is not itself
regular.

Definition 6.3 f has an isolated singularity at a if f is holomorphic in a
punctured disc D(a; r) \ {0}; if a is a singular point that does not satisfy this
condition, it is called a non-isolated singularity.

If f has an isolated singularity at a, f is holomorphic in the annulus {z :
0 < |z − a| < r} and has a unique Laurent expansion f(z) =

∑∞
n=−∞ cn(z −

a)n. The singularity a is: removable singularity if cn = 0∀n < 0; pole of order
m if c−m 6= 0, cn = 0∀n < −m; isolated essential singularity if there does not
exist m such that cn = 0 ∀n < −m.

In D′(a, r), f(z) =
∑−1
n=−∞ cn(z − a)n +

∑∞
n=0 cn(z − a)n

Definition 6.4 The principal part of the Laurent expansion is

−1∑
n=−∞

cn(z − a)n.

6.2 Zeros

Suppose f is holomorphic in D(a; r) and f(a) = 0. Assume f is not identi-
cally zero in D(a; r) (in other words f is not zero everywhere in D(a; r)).

Then by Taylor’s theorem,

f(z) =
∞∑
n=m

cm(z − a)m

for some m ≥ −1, cm 6= 0.
The order of zero of f at a is m if and only if f(a) = f ′(a) = . . . =

f (m−1)(a) = 0 but f (m)(a) 6= 0.
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Theorem 6.5 Suppose f is holomorphic in D(a; r). Then f has a zero of
order m at a if and only if limz→a(z − a)−mf(z) = C for some constant
C 6= 0.

Theorem 6.6 (Theorem 2) Suppose f is holomorphic on D′(a; r). Then f
has a pole of order m at a if and only if

lim
z→a

(z − a)mf(z) = D

for a nonzero constant D.

Example 6.5 z sin(z) has a zero of order 2 at z = 0 and has zeros of order
1 at z = nπ, n 6= 0.

Proof of Theorem 2 =⇒ Suppose a is a pole of order m. For z ∈ D(a; r),
z 6= a,

f(z) =
∞∑

n=−m
cn(z − a)n, c−m 6= 0

In D′(a; r),

(z − a)mf(z) =
∞∑
n=0

cn−m(z − a)n.

The series on the right hand side defines a function continuous at z = a.
Hence

lim
z→a

(z − a)nf(z) = c−m 6= 0.

By Laurent’s theorem,

f(z) =
∞∑

n=−∞
cn(z − a)n

where

cn =
1

2πi

∫
γ(a;s)

f(w)

(w − a)n+1
dw

(for 0 < s < r). We need cn = 0 (n < −m) and c−m 6= 0. Since limz→a(z −
a)mf(z) = D 6= 0, there is δ > 0 such that

|(w − a)mf(w)−D| < ε
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where 0 < |w − a| < δ. Take 0 < s < min(δ, r). Then if |w − a| = s, then
|(w − a)mf(w)| ≤ |D| + εHence(w − a)−n−1f(w)| ≤ (|D|+ ε) s−m−n−1. So
using the estimation theorem,

|cn| ≤ (|D|+ ε)s−n−m.

If n < −m then s−n−m can be made arbitrarily small, but cn is independent
of s so cn = 0. Hence

f(z) =
∞∑

n=−m
cn(z − a)n.

As in the proof of (⇒),

c−m = lim
z→a

(z − a)mf(z) = D 6= 0.

6.3 Behaviour near an isolated singularity

Case 1: Removable singularity. If f(z) =
∑∞
n=0 cn(z − a)n in D′(a; 4). then

f(z) → c0 as z → a. Redefining f(a) to c0 we find f is holomorphic in
D(a; r).

Example 6.6 f(z) = sin(z)
z

Case 2: Pole If f has a pole at a, then |f(z)| → ∞ as z → a.
Case 3: Essential singularity:
Casorati-Weierstrass theorem (not proved): If f has an isolated essential

singularity at a, for any w ∈ C there exists < an > such that an → a and
f(an)→ w. In fact according to Picard’s theorem, in any D′(a, r), f assumes
every complex value except possibly one. For example, e1/z has an essential
singularity at 0; the value not assumed is 0.

Definition 6.7 The extended complex plane Ĉ is C ∪ {∞} (add an extra
point at ∞).

Define this by identifying
Ĉ = U ∪ V/ ∼

where U = C, V = C. On C \ {0}, identify U with V via u ∈ U \ {0}
∼ v ∈ V where v = 1/u. So as u → ∞, v → 0 and as u → 0, v → ∞. We
can also write Ĉ as {[z, w]}/ ∼ where (z, w) ∼ (λz, λw) for any λ ∈ C \ {0}.
Thus if z 6= 0, (z, w) ∼ (1, w/z) and if w 6= 0, then (z, w) ∼ (z/w, 1). These
are in correspondence with the sets U and V .

Uniqueness
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Theorem 6.8 Suppose f is holomorphic on A with

f(z) =
∞∑
n=0

bn(z − a)n.

Suppose also

f(z) =
∞∑
n=0

cn(z − a)n.

Then bn = cn.

Proof 6.2 Assume a = 0. Choose r with R < r < S. Then

2πicn =
∫
γ(0;r)

f(w)w−n−1dw

=
∫
γ(0;r)

∞∑
k=−∞

bkw
k−n−1dw

=
∫
γ(0;r)

∞∑
k=0

bkw
k−n−1dw =

∫
γ(0;r)

∞∑
m=−1

b−mw
−m−n−1dw

Using the theorem on uniform convergence to interchange the sum with
the integral,

2πicn =
∞∑

k=−∞
bk

∫
γ(0,r)

wk−n−1dw = 2πibn.

6.4 Meromorphic functions

Definition 6.9 A C-valued function which is holomorphic in an open set
G ⊂ Ĉ except possibly for poles is called meromorphic in G.

Theorem 6.10 If f is holomorphic on Ĉ, then f is constant.

(Proof: Use Liouville’s theorem)

Theorem 6.11 If f is meromorphic on Ĉ then f is a rational function
p(z)/q(z) for some polynomials p and q.

Example 6.7 1. (z − a)−2 has a double pole at z = 1
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2. (1− cos(z))/z2 is holomorphic except at z = 0. At z = 0, 1− cos(z) =
z2/2 + . . . so the singularity is removable.

3. 1
sin(z)

= 1
z−z3/3!+... = 1

z(1−z2/3!+...) so there is a simple pole at 0.

4.
cos(z)/ sin(z) = (1− z2/2 + . . .)(1/z)(1 + z2/3! +O(z4))

cot(z) has a simple pole at z = 0 Similarly since cot(z − kπ) = cot(z),
cot(z) has a simple pole at kπ.

5. sin(1/z) =
∑∞
n=0(−1)n z

−(2n+1)

(2n+1)!
has an isolated essential singularity at 0.

6. 1
sin(1/z)

is singular when sin(1/z) = 0, in other words when 1/z = kπ or

z = 1/(kπ) for some integer k 6= 0.

Remark 6.1 If a is a limit point of the singularities of a function defined on
a subset of C, then f cannot be holomorphic on any punctured disk with centre
at a, and cannot have a Laurent expansion about a. So a is not an isolated
singularity or a regular point; it is a non-isolated essential singularity.

Example 6.8

f(z) =
1

z3 cos(1/z)
.

This has poles at 1/z = (2n+1)π/2, where cos(1/z) has zeros (in other words
z = 2

(2n+1)π
). This expression tends to 0 as n → ∞ so 0 is a limit point of

the poles, or a non-isolated essential singularity. It follows that f does not
have a Laurent expansion about 0.

If f is meromorphic in an open subset G of C̃, then the set of poles of f
has no limit point in G, and f can have at most finitely many poles in any
closed subset of G.

6.5 Behaviour of functions at ∞
Zeros and poles of a function f at ∞ are studied by studying the function
f̂(w) = f(1/w). f has a pole of order m at ∞ if and only if f̂ has a pole of
order m at 0.

f has a zero of order m at ∞ if and only if f̂ has a zero of order m at 0.
Examples:
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1.
f(z) = z3

f̂(w) = f(1/2) = w−3

At w = 0, f̂ has a pole of order 3.

2. f(z) = 1
z2

sin 1
z
. f̂(w) = w2 sin(w). f̂(w) has a zero of order 3 at w = 0.

3. f(z) = z sin(1/z)

f̂(w) = sin(w)/w has a removable singularity at w = 0 if and only if
z =∞, in other words w = 0.

Example 6.9

f(z) =
(z − 1)2 cos(πz)

(2z − 1)(z2 + 1)5 sin3(πz)

The denominator is zero at z = 1/2, z = ±i and z = k ∈ Z.
z = 1/2 :

(z2 + 1)5 sin3(πz) 6= 0

and (z − 1)2 6= 0 but cos(πz) = 0. So z = 1/2 is a removable singularity.
z = ±i: 2z − 1 6= 0, sin3(πz) 6= 0, z − 1 6= 0, cos(πz) 6= 0. So z2 + 1 =

(z + i)(z − i) and z = ±i are poles of f(z) of order 5.
z = k, k 6= 1: cos(πz) 6= 0, z − 1 6= 0
sin(πz) = (πz − πk)(1 + higherorder)
so 2z − 1 6= 0, z2 + 1 6= 0.
So z = k is a pole of order 3, and z = 1 is a pole of order 1.

6.6 Meromorphic functions

Definition 6.12 A C-valued function which is holomorphic in an open set
G ⊂ C except possibly for poles is called meromorphic in G.

Theorem 6.13 If f is holomorphic on C̃, then f is constant.

(Proof: Use Liouville’s theorem)

Theorem 6.14 If f is meromorphic on Ĉ then f is a rational function
p(z)/q(z) for some polynomials p and q.

Example 6.10 1. (z − a)−2 has a double pole at z = 1
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2. (1− cos(z))/z2 is holomorphic except at z = 0. At z = 0, 1− cos(z) =
z2/2 + . . . so the singularity is removable.

3. 1
sin(z)

= 1
z−z3/3!+... = 1

z(1−z2/3!+...) so there is a simple pole at 0.

4.
cos(z)/ sin(z) = (1− z2/2 + . . .)(1/z)(1 + z2/3! +O(z4))

cot(z) has a simple pole at z = 0 Similarly since cot(z − kπ) = cot(z),
cot(z) has a simple pole at kπ.

5. sin(1/z) =
∑∞
n=0(−1)n z

−(2n+1)

(2n+1)!
has an isolated essential singularity at 0.

6. 1
sin(1/z)

is singular when sin(1/z) = 0, in other words when 1/z = kπ or

z = 1/(kπ) for some integer k 6= 0.

Remark 6.2 If a is a limit point of the singularities of a function defined on
a subset of C, then f cannot be holomorphic on any punctured disk with centre
at a, and cannot have a Laurent expansion about a. So a is not an isolated
singularity or a regular point; it is a non-isolated essential singularity.

Example 6.11

f(z) =
1

z3 cos(1/z)
.

This has poles at 1/z = (2n+1)π/2, where cos(1/z) has zeros (in other words
z = 2

(2n+1)π
). This expression tends to 0 as n → ∞ so 0 is a limit point of

the poles, or a non-isolated essential singularity. It follows that f does not
have a Laurent expansion about 0.

If f is meromorphic in an open subset G of C̃, then the set of poles of f
has no limit point in G, and f can have at most finitely many poles in any
closed subset of G.

Behaviour of functions at ∞
Zeros and poles of a function f at∞ are studied by studying the function

f̂(w) = f(1/w). f has a pole of order m at ∞ if and only if f̂ has a pole of
order m at 0.

f has a zero of order m at ∞ if and only if f̂ has a zero of order m at 0.
Examples:
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1.
f(z) = z3

f̂(w) = f(1/2) = w−3

At w = 0, f̂ has a pole of order 3.

2. f(z) = 1
z2

sin 1
z
. f̂(w) = w2 sin(w). f̂(w) has a zero of order 3 at w = 0.

3. f(z) = z sin(1/z) f̂(w) = sin(w)/w has a removable singularity at
w = 0 if and only if z =∞.

Example 6.12

f(z) =
(z − a)2 cos(πz)

(2z − 1)(z2 + 1)5 sin3(πz)

The denominator is zero at z = 1/2, z = ±i and z = k ∈ Z.

z = 1/2 :
(z2 + 1)5 sin3(πz) 6= 0

and (z − 1)2 6= 0 but cos(πz) = 0. So z = 1/2 is a removable singularity.
z = ±i: 2z − 1 6= 0, sin3(πz) 6= 0, z − 1 6= 0, cos(πz) 6= 0. So z2 + 1 =

(z + i)(z − i) and z = ±i are poles of F (z) of order 5.
z = k, k 6= 1: cos(πz) 6= 0, z−1 6= 0 sin(πz) = (πz−πk)(1+higherorder)

so 2z − 1 6= 0, z2 + 1 6= 0. So z = k is a pole of order 3, and z = 1 is a pole
of order 1.

Example 6.13 f(z) = z sin(z) has zeros at z = nπ. So 1/f has poles at
z = kπ. At z = 0, sin(z) = z − z3/3! + . . . = z(1− z2/3! +O(z4)) so

1/ sin(z) = 1/z(1−z2/3!+O(z4))−1 = (1/z)(1+(z2/3!+. . .)+(z2/3!+. . .)2+. . .

= (1/z)(1 + z2/3! +O(z4))

So 1/(z sin(z)) has a double pole at z = 0. At z = kπ, k 6= 0,

sin(z) = (−1)k sin(z − kπ)

and
z = kπ + (z − kπ)

So
1

z
=

1

kπ (1 + (z − kπ)/kπ)
=

1

kπ

∞∑
n=0

(−1)n(
z − kπ
kπ

)n.

So 1/(z sin(z)) has a simple pole at z = kπ when k 6= 0.
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Example 6.14
f(z) = cot(z) = cos(z)/ sin(z)

Since sin(z) = 0 when z = kπ and cos(kπ) 6= 0, and sin(z) has a simple zero
at z = kπ,

sin(z) = (z − kπ)(1− (z − kπ)2/3! + . . .)

we find cot(z) has simple poles at these values.

Non-isolated singularities are always essential. (Non-isolated singularity
means there is no punctured disk {z : 0 ≤ |z − a| < r} where f is holomor-
phic.) If a is an isolated singularity (f is holomorphic in D′(a; r) for some
r), there is always a Laurent expansion

f(z) =
∞∑

n=−∞
cn(z − a)n

(i) Isolated essential singularity: Infinitely many nonzero cj for j < 0
(ii) Pole: f(z) = c−m(z − a)−m + c−m+1(z − a)−m+1 + . . . of order m.
(iii) Removable singularity: All cn = 0 if n < 0.

1

z2 sin(z)
=

1

z2(z − z3/3! + z5/5! + . . .)
=

1

z3(1− A)

where A = z2/3!− z4/5! + . . .

=
1

z3
(1 + A+ A2 + . . .)

Expand 1 + A+ . . . to order z2 in z.
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