Proof[section]

5. Cauchy integral formula

Theorem 5.1. Suppose f is holomorphic inside and on a positively oriented curve γ. Then if a is a point inside γ,

$$
f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-a} d w
$$

Proof. There exists a number r such that the disc $D(a, r)$ is contained in $I(\gamma)$. For any $\epsilon<r$,

$$
\int_{\gamma} \frac{f(w)}{w-a} d w=\int_{\gamma(a ; \epsilon)} \frac{f(w)}{w-a} d w
$$

by the Deformation Theorem. So

$$
\begin{aligned}
& \left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-a} d w-f(a)\right|=\left|\frac{1}{2 \pi i} \int_{\gamma(a ; \epsilon)} \frac{f(w)-f(a)}{w-a} d w\right| \\
& \quad=\left|\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(a+\epsilon e^{i \theta}\right)-f(a)}{\epsilon e^{i \theta}} i \epsilon e^{i \theta} d \theta\right| \\
& \quad \leq \frac{1}{2 \pi}(2 \pi) \sup _{\theta \in[0,2 \pi]}\left|f\left(a+\epsilon e^{i \theta}\right)-f(a)\right|
\end{aligned}
$$

The right hand side tends to 0 as $\epsilon \rightarrow 0$. So the left hand side is 0 .

5.1. Liouville's Theorem.

Theorem 5.2. If f is holomorphic on \mathbf{C} and is bounded (in other words there exists M for which $|f(z)|<M$ for all z) then f is constant.

Proof. Suppose $|f(w)| \leq M$ for all $w \in$ C. Fix a and b in C. Take $R \geq 2 \max \{|a|,|b|\}$ so that $|w-a| \geq R / 2$ and $|w-b| \geq R / 2$ when $|w|=R$. By Cauchy's integral formula with $\gamma=\gamma(0 ; R)$,

$$
\begin{gathered}
f(a)-f(b)=\frac{1}{2 \pi i} \int_{\gamma} f(w)\left(\frac{1}{w-a}-\frac{1}{w-b}\right) d w \\
\frac{a-b}{2 \pi} \int_{\gamma} \frac{f(w)}{(w-a)(w-b)} d w
\end{gathered}
$$

So

$$
|f(a)-f(b)| \leq \frac{1}{2 \pi} 2 \pi R M \frac{|a-b|}{(R / 2)^{2}}
$$

by the Estimation Theorem. Since R is arbitrarily large, $L H S=0$.

5.2. Fundamental theorem of algebra.

Theorem 5.3. Let p be a non-constant polynomial with constant coefficients. Then there exists $w \in \mathbf{C}$ such that $p(w)=0$.

Proof. Suppose not. Then $p(z) \neq 0$ for all z. Since $|p(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$, there exists R such that $1 /|p(z)|<1$ for $|z|>R$. On $\bar{D}(0, R), 1 / p(z)$ is continuous and hence bounded. Hence $1 / p(z)$ is bounded on \mathbf{C}. It is also holomorphic, so constant by Liouville.

5.3. Cauchy's formula.

Theorem 5.4. Suppose f is holomorphic inside and on a positively oriented contour γ. Let a lie inside γ. Then $f^{(n)}(a)$ exists for $n=$ $1,2, \ldots$ and

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w .
$$

Corollary 5.5. If f is holomorphic in an open set G, then f has derivatives of all orders in G.

Proof. For $n=0$ this is Cauchy's integral formula. We assume it is true for $n=k$ and prove it for $n=k+1$. By deformation theorem, we may replace γ by $\gamma(a ; 2 r)$. Take $|h|<r$. By Cauchy's formula for $n=k$,

$$
\begin{aligned}
f^{(k)}(a+h)- & f^{(k)}(a)=\frac{k!}{2 \pi i} \int d w f(w)\left(\frac{1}{(w-a-h)^{k+1}}-\frac{1}{(w-a)^{k+1}}\right) \\
& =\frac{(k+1)!}{2 \pi i} \int_{\gamma} f(w)\left(\int_{[a, a+h]}(w-\zeta)^{-k-2} d \zeta\right) d w
\end{aligned}
$$

(by Fundamental Theorem of Calculus for $f(z)=\frac{1}{z^{k+1}}$).
Define

$$
\begin{aligned}
& F(h)=\frac{f^{(k)}(a+h)-f^{(k)}(a)}{h}=\frac{(k+1)!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{(k+2)}} d w \\
& =\frac{(k+2)!}{2 \pi i h} \int_{\gamma} f(w)\left(\int_{\zeta \in[a, a+h]}\left(\int_{v \in[a, \zeta]}(w-v)^{-k-3} d v\right) d z\right) d w
\end{aligned}
$$

Since f is holomorphic (and hence continuous), it is bounded by some M on γ (since γ is compact). For $v \in[a, \zeta], \zeta \in[a, h],|w-v| \geq r$ for all $w \in \gamma$. Also \mid zeta $-a \mid \leq h$. Hence by the estimation theorem

$$
|F(h)| \leq \frac{(k+2)!}{2 \pi|h|} \frac{M|h|^{2}}{r^{k+3}} 4 \pi r .
$$

So $F(h) \rightarrow 0$ as $h \rightarrow 0$.

Theorem 5.6 (Morera's Theorem). Suppose f is continuous in an open set G and $\int_{\gamma} f(z) d z=0$ for all triangles γ in G. Then f is holomorphic on G.
Proof. Let $a \in G$. Choose r so that $D(a ; r) \subset G$. Since $D(a ; r)$ is convex, the Antiderivative Theorem implies that there exists a holomorphic function F such that $F^{\prime}=f$. Since F is holomorphic on $D(a, r)$, so is f. Since a is arbitrary, f is holomorphic on G.
Example 5.1. Use of Cauchy integral formula:
1.

$$
\int_{\gamma(i ; 1)} \frac{z^{2}}{z^{2}+1} d z
$$

We need to write the integrand as $\frac{f(z)}{z-a}$ where f is holomorphic at a.
Take

$$
f(z)=\frac{z^{2}}{z+i}
$$

since $z^{2}+1=(z+i)(z-i)$. Then

$$
\int \gamma(i ; 1) \frac{f(z)}{z-a} d z=2 \pi i f(a)
$$

so

$$
\frac{z^{2}}{(z+i)(z-i)} d z=2 \pi i \frac{z^{2}}{z+i}=-\pi
$$

2. $\int_{\gamma(0 ; 1)} \frac{e^{z}}{z^{3}} d z$

Rewrite as $\int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z$ which equals $2 \pi f^{(n)}(a)$. We check that f is holomorphic inside and on a contour enclosing a. Take $f(z)=e^{z}, n=$ 2
$f^{\prime}(z)=f^{\prime \prime}(z)=e^{z}$ so the integral is $\frac{2 \pi i}{2!} f^{(2)}(0)=\pi i$ 3.

$$
\int_{\gamma(0 ; 1)} \frac{\operatorname{Re}(z)}{z-1 / 2} d z
$$

cannot be evaluated directly using the Cauchy integral formula since $\operatorname{Re}(z)$ is not a holomorphic function of z. But $\gamma(0 ; 1)$ is the unit circle so $\operatorname{Re}(z)=(z+\bar{z}) / 2$ and if $|z|=1, \bar{z}=z^{-1}$ so $\operatorname{Re}(z)=\left(z+z^{-1}\right) / 2$. So on $\gamma(0 ; 1)$

$$
\begin{gathered}
\frac{\operatorname{Re}(z)}{z-1 / 2}=\frac{z^{2}+1}{2 z(z-1 / 2)} \\
=\frac{z}{2(z-1 / 2)}+\frac{1}{z(2 z-1)} \\
=\frac{1}{2} \frac{(z-1 / 2)+1 / 2}{z-1 / 2}+\frac{A}{z}+\frac{B}{2 z-1}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{2} \frac{1}{2 z-1}+\frac{A(2 z-1)+B z}{z(2 z-1)} \\
& =\frac{1}{2}+\frac{1}{2} \frac{1}{2 z-1}+\frac{(2 A+B) z-A}{z(2 z-1)}
\end{aligned}
$$

Solving, $A=-1$ and $B=-2 A=2$.
So our expression is

$$
\begin{aligned}
=\frac{1}{2} & +\frac{1}{2} \frac{1}{2 z-1}+\frac{(-1}{z}+\frac{2}{(2 z-1)} \\
& =\frac{1}{2}-\frac{1}{z}+\frac{5}{4(z-1 / 2)}
\end{aligned}
$$

So by Cauchy's formula

$$
\int_{\gamma(0 ; 1)} \frac{\operatorname{Re}(z)}{z-1 / 2} d z=2 \pi i / 4
$$

5.4. Poisson integral formula.

Theorem 5.7. Suppose f is holomorphic inside and on $\gamma(0 ; 1)$. Then

$$
f\left(r e^{i \theta}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-t)+r^{2}} f\left(e^{i t}\right) d t\right.
$$

Proof. Fix $z=r e^{i \theta}$. Apply Cauchy integral formula to $g(z)=f(z) \phi(z)$ where

$$
\phi(w)=\frac{1-r^{2}}{1-w \bar{z}}
$$

Note that $\phi(z)=1$. Then

$$
\begin{gathered}
f(z)=f(z) \phi(z) \\
=\frac{1-w^{2}}{2 \pi i} \int_{\gamma(0 ; 1)} \frac{f(w)}{(w-z)(1-w \bar{z})} d w \\
=\frac{1-r^{2}}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(e^{i t}\right) i e^{i t} d t}{\left(e^{i t}-r e^{i \theta}\right)\left(1-r e^{i t} e^{-i \theta}\right)}
\end{gathered}
$$

as required.

5.5. Power Series.

Theorem 5.8. (Taylor's Theorem) Suppose f is holomorphic on $D(a ; R)$. Then there exist constants c_{n} so that

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

and

$$
c_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w=\frac{f^{(n)}(a)}{n!}
$$

where γ is the circle $\gamma(a ; r)$ for $0<r<R$.
Proof. Fix $z \in D(a ; R)$ and choose r so that $|z-a|<r<R$ Take $\gamma=\gamma(a ; r)$. Then $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$ (by Cauchy integral formula). Since $|z-a|<|w-a|$ for all $w \in \gamma$,

$$
\frac{1}{w-z}=\frac{1}{w-a} \frac{1}{1-\frac{z-a}{w-a}}
$$

Now apply the binomial expansion:

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{(z-a)^{n}}{(w-a)^{n+1}} f(w) d w
$$

Since γ is compact and f is continuous, f is bounded. So for some constant M,

$$
\left|\frac{(z-a)^{n}}{(w-a)^{n+1}} f(w)\right| \leq \frac{M}{r} \frac{(z-a)^{n}}{r}:=M_{n} .
$$

Since $|z-a|<r, \sum_{n} M_{n}$ converges. So (by uniform convergence theorem) we may interchange summation and integration. So

$$
f(z)=\frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(\int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} d w\right)(z-a)^{n}
$$

Hence the theorem follows by Cauchy's formula for derivatives.
Example 5.2. Let f be holomorphic on C. Prove that if there are $M>0$ and $K>0,0<k \in \mathbf{Z}$ such that $|f(z)| \leq M|z|^{k}$ for $|z| \leq K$, then f is a polynomial of degree $\leq k$.

Proof. By Taylor's theorem f has a power series expansion $f(z)=$ $\sum_{n=0}^{\infty} c_{n} z^{n}$ in any disk with center 0 .

$$
c_{n}=\frac{1}{2 \pi i} \int_{\gamma(0 ; R)} f(z) z^{-n-1} d z
$$

So if $R \geq K$,

$$
\left|c_{n}\right| \leq \frac{1}{2 \pi} \sup \left\{\left|f(z) z^{-n-1}\right|:|z|=R\right\}
$$

times the length of $\gamma(0 ; R)$. So this is

$$
\leq \frac{1}{2 \pi} M R^{k-n-1}(2 \pi R)
$$

Since R can be chosen arbitrarily large, we must have $c_{n}=0$ for $n>k$.
Thus f is a polynomial of degree $\leq k$.
Proposition 5.1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. Then

$$
f(z) g(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

where $c_{n}=\sum_{r=0}^{n} a_{r} b_{n-r}$ If the radius of convergence of the power series for f is R_{1} and that for g is R_{2} then the radius of convergence of the power series for $f g$ is at least the minimum of R_{1} and R_{2}.

Example 5.3. The power series for $\exp (z)$ has infinite radius of convergence (by the Ratio Test).

5.6. Zeros of holomorphic functions.

Definition 5.9. a is an isolated zero of f if there is $\epsilon>0$ such that $D^{\prime}(a, \epsilon)$ contains no zeros of f.

Theorem 5.10. (Identity Theorem) Suppose G is a region and f is holomorphic on G. If the set of zeros of f on G has a limit point in G then f is zero everywhere in G. (Equivalently the zeros of f are isolated unless f is zero everywhere.)
Proof. Let $a \in G$ with $f(a)=0$. By Taylor's theorem $(z)=\sum_{n=0}^{\infty} c_{n}(z-$ $a)^{n}$ for $|z-a| \leq r$. Either all $c_{n}=0$ (which implies $f=0$ everywhere in $D(a ; r))$ or there is a smallest $m>0$ with $c_{m} \neq 0$. The series $\sum_{n=0}^{\infty} c_{n+m}(z-a)^{n}$ has radius of convergence at least r, and defines a function g which is continuous in $D(a ; r)$ because a power series defines a holomorphic function inside its radius of convergence. Since $g(a) \neq 0$ and g is continuous at $a, g(z) \neq 0$ for z in some disk $D(a ; \epsilon)$. In the punctured disk $D(a, \epsilon \backslash\{a\}), f(z)=(z-a)^{m} g(z)$ is never zero. So a is not a limit point of the set of zeros of f. Hence if $f(a)=0$, either $f=0$ in some disc, or a is not a limit point (in other words there is some disc where $f(z) \neq 0$ except for $z=a)$.

Sketch proof that if there is a limit point of the set of zeros in G, then $f=0$: everywhere in G : Show that the set E of limit points is
contained in the set $Z(f)$ of the set of zeros and both E and $G \backslash E$ are open (hence either $E=G$ or E is the empty set since G is connected).
(i) Suppose there is a limit point a for which $f(a) \neq 0$. Since it is a limit point, there are disks of radius $1 / n$ containing points a_{n} with $f\left(a_{n}\right)=0$ and $\left|a-a_{n}\right|<1 / n$. Since f is continuous this implies $f(a)=0$ contrary to hypothesis. So
(ii) To show both E and $G \backslash E$ are open: Suppose $a \in E$. Then $f=0$ in some disk D around a (by part 1). So this disk $D \subset E$. So E is open. To show $G \backslash E$ is open: Take $a \in G \backslash E$. Since a is not a limit point of $Z(f)$ there is a disc $D(a ; r)$ in which f is never zero. By (i) $E \subset Z(f)$. Hence $D(a ; r) \subset G \backslash E$.

5.7. Maximum Modulus Theorem.

Theorem 5.11. Suppose f is holomorphic on $D(a, R)$ with $|f(z)| \leq$ $|f(a)|$ for all $z \in D(a, R)$. Then f is constant.
Theorem 5.12. Suppose G is a bounded region, f is holomorphic in G and continuous on \bar{G}. Then $|f|$ attains its maximum on the boundary of G, in other words on $\partial G=\bar{G} \backslash G$.

Proof of Theorem 5.11: Choose $0<r<R$. By the Cauchy integral formula
$\left(\gamma(t)=r e^{i t}\right)$

$$
\begin{gathered}
=\frac{1}{2 \pi i} \int_{0}^{2 \pi}\left(\frac{f\left(a+r e^{i t}\right)}{r i e^{i t}}\left(r e^{i t}\right) d t\right. \\
=\frac{1}{2 \pi} \int f\left(a+r e^{i t}\right) d t .
\end{gathered}
$$

Hence

$$
|f(a)| \leq \frac{1}{2 i} \int_{0}^{2 \pi}\left|f\left(a+r e^{i t}\right)\right| d t \leq|f(a)|
$$

(by hypothesis on f).

$$
\int_{0}^{2 \pi}\left[|f(a)|-f\left(a+r e^{i t}\right)\right] d t=0
$$

(The integrand is continuous and ≥ 0, so it must be equal to 0 .) This is true for all $r<R$. So $|f|$ is constant in $D(a ; R)$. So f is also constant in $D(a ; R)$.

Proof of Theorem 5.12:
\bar{G} is closed and bounded, so on $\bar{G},|f|$ is bounded (as it is continuous) and attains its maximum value M at some point on \bar{G}. Assume $|f|$ does
not attain M on the boundary ∂G. Then $|f(a)|=M$ for some $a \in G$. By part (a), f is constant on some disk $D(a ; R) \subset G$. Hence f is constant in G, by the identity theorem. By continuity, f is constant on \bar{G}, so it attains its maximum on ∂G, contradicting the hypothesis.

Example 5.4 (Examples). (1) Is it possible to have a holomorphic function that is equal to 0 everywhere on the real axis?

Answer: No, since the Identity Theorem says that if the set of zeros has a limit point then f is zero everywhere.
(A limit point is a point p for which any disc containing p, no matter how small, will contain some points z where $f(z)=0$.)
(2) Is it possible to have a holomorphic function which is equal to 1 when $z=\frac{1}{2 n}$ and equal to -1 when $z=\frac{1}{2 n+1}$?

Answer: No, since the set of points $\left\{\frac{1}{2 n}\right\}$ has a limit point (namely 0) and $f=1$ on those points. Likewise the set of points $\left\{\frac{1}{2 n+1}\right\}$ has a limit point (namely 0) and $f=-1$ on those points. Looking at the points $\left\{\frac{1}{2 n}\right\}$ we conclude $f=1$ everywhere (by the identity theorem). Likewise looking at the points $\left\{\frac{1}{2 n+1}\right\}$ we conclude $f=-1$ everywhere (by the identity theorem). This is a contradiction.

