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5. Cauchy integral formula

Theorem 5.1. Suppose f is holomorphic inside and on a positively
oriented curve γ. Then if a is a point inside γ,

f(a) =
1

2πi

∫

γ

f(w)

w − a
dw.

Proof. There exists a number r such that the disc D(a, r) is contained
in I(γ). For any ǫ < r,

∫

γ

f(w)

w − a
dw =

∫

γ(a;ǫ)

f(w)

w − a
dw

by the Deformation Theorem. So

|
1

2πi

∫

γ

f(w)

w − a
dw − f(a) |=|

1

2πi

∫

γ(a;ǫ)

f(w)− f(a)

w − a
dw |

=|
1

2πi

∫ 2π

0

f(a+ ǫeiθ)− f(a)

ǫeiθ
iǫeiθdθ |

≤
1

2π
(2π) sup

θ∈[0,2π]

| f(a+ ǫeiθ)− f(a) |

The right hand side tends to 0 as ǫ → 0. So the left hand side is 0. �

5.1. Liouville’s Theorem.

Theorem 5.2. If f is holomorphic on C and is bounded (in other words
there exists M for which |f(z)| < M for all z) then f is constant.

Proof. Suppose |f(w)| ≤ M for all w ∈ C. Fix a and b in C. Take
R ≥ 2max{|a|, |b|} so that |w − a| ≥ R/2 and |w − b| ≥ R/2 when
|w| = R. By Cauchy’s integral formula with γ = γ(0;R),

f(a)− f(b) =
1

2πi

∫

γ

f(w)

(

1

w − a
−

1

w − b

)

dw

a− b

2π

∫

γ

f(w)

(w − a)(w − b)
dw.

So

| f(a)− f(b) |≤
1

2π
2πRM

|a− b|

(R/2)2

by the Estimation Theorem. Since R is arbitrarily large, LHS = 0. �
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5.2. Fundamental theorem of algebra.

Theorem 5.3. Let p be a non-constant polynomial with constant coef-
ficients. Then there exists w ∈ C such that p(w) = 0.

Proof. Suppose not. Then p(z) 6= 0 for all z. Since |p(z)| → ∞ as
|z| → ∞, there exists R such that 1/|p(z)| < 1 for |z| > R. On
D̄(0, R), 1/p(z) is continuous and hence bounded. Hence 1/p(z) is
bounded on C. It is also holomorphic, so constant by Liouville. �

5.3. Cauchy’s formula.

Theorem 5.4. Suppose f is holomorphic inside and on a positively
oriented contour γ. Let a lie inside γ. Then f (n)(a) exists for n =
1, 2, . . . and

f (n)(a) =
n!

2πi

∫

γ

f(w)

(w − a)n+1
dw.

Corollary 5.5. If f is holomorphic in an open set G, then f has
derivatives of all orders in G.

Proof. For n = 0 this is Cauchy’s integral formula. We assume it is
true for n = k and prove it for n = k + 1. By deformation theorem,
we may replace γ by γ(a; 2r). Take |h| < r. By Cauchy’s formula for
n = k,

f (k)(a+h)−f (k)(a) =
k!

2πi

∫

dwf(w)

(

1

(w − a− h)k+1
−

1

(w − a)k+1

)

=
(k + 1)!

2πi

∫

γ

f(w)

(
∫

[a,a+h]

(w − ζ)−k−2dζ

)

dw

(by Fundamental Theorem of Calculus for f(z) = 1
zk+1 ).

Define

F (h) =
f (k)(a+ h)− f (k)(a)

h
=

(k + 1)!

2πi

∫

γ

f(w)

(w − a)(k+2)
dw

=
(k + 2)!

2πih

∫

γ

f(w)

(
∫

ζ∈[a,a+h]

(

∫

v∈[a,ζ]

(w − v)−k−3dv
)

dz

)

dw

Since f is holomorphic (and hence continuous), it is bounded by
some M on γ (since γ is compact). For v ∈ [a, ζ], ζ ∈ [a, h], |w−v| ≥ r
for all w ∈ γ. Also |zeta− a| ≤ h. Hence by the estimation theorem

|F (h)| ≤
(k + 2)!

2π|h|

M |h|2

rk+3
4πr.

So F (h) → 0 as h → 0. �
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Theorem 5.6 (Morera’s Theorem). Suppose f is continuous in an
open set G and

∫

γ
f(z)dz = 0 for all triangles γ in G. Then f is

holomorphic on G.

Proof. Let a ∈ G. Choose r so that D(a; r) ⊂ G. Since D(a; r) is
convex, the Antiderivative Theorem implies that there exists a holo-
morphic function F such that F ′ = f . Since F is holomorphic on
D(a, r), so is f . Since a is arbitrary, f is holomorphic on G. �

Example 5.1. Use of Cauchy integral formula:
1.

∫

γ(i;1)

z2

z2 + 1
dz

We need to write the integrand as f(z)
z−a

where f is holomorphic at a.
Take

f(z) =
z2

z + i
since z2 + 1 = (z + i)(z − i). Then

∫

γ(i; 1)
f(z)

z − a
dz = 2πif(a)

so
z2

(z + i)(z − i)
dz = 2πi

z2

z + i
= −π

2.
∫

γ(0;1)
ez

z3
dz

Rewrite as
∫

γ

f(z)
(z−a)n+1dz which equals 2πf (n)(a). We check that f is

holomorphic inside and on a contour enclosing a. Take f(z) = ez, n =
2
f ′(z) = f ′′(z) = ez so the integral is 2πi

2!
f (2)(0) = πi

3.
∫

γ(0;1)

Re(z)

z − 1/2
dz

cannot be evaluated directly using the Cauchy integral formula since
Re(z) is not a holomorphic function of z. But γ(0; 1) is the unit circle
so Re(z) = (z + z̄)/2 and if |z| = 1, z̄ = z−1 so Re(z) = (z + z−1)/2.
So on γ(0; 1)

Re(z)

z − 1/2
=

z2 + 1

2z(z − 1/2)

=
z

2(z − 1/2)
+

1

z(2z − 1)

=
1

2

(z − 1/2) + 1/2

z − 1/2
+

A

z
+

B

2z − 1
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=
1

2
+

1

2

1

2z − 1
+

A(2z − 1) + Bz

z(2z − 1)

=
1

2
+

1

2

1

2z − 1
+

(2A+ B)z − A

z(2z − 1)

Solving, A = −1 and B = −2A = 2.
So our expression is

=
1

2
+

1

2

1

2z − 1
+

(−1

z
+

2

(2z − 1)

=
1

2
−

1

z
+

5

4(z − 1/2)

So by Cauchy’s formula

∫

γ(0;1)

Re(z)

z − 1/2
dz = 2πi/4

5.4. Poisson integral formula.

Theorem 5.7. Suppose f is holomorphic inside and on γ(0; 1). Then

f(reiθ =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
f(eit)dt.

Proof. Fix z = reiθ. Apply Cauchy integral formula to g(z) = f(z)φ(z)
where

φ(w) =
1− r2

1− wz̄
.

Note that φ(z) = 1. Then

f(z) = f(z)φ(z)

=
1− w2

2πi

∫

γ(0;1)

f(w)

(w − z)(1− wz̄)
dw

=
1− r2

2πi

∫ 2π

0

f(eit)ieitdt

(eit − reiθ)(1− reite−iθ)

as required. �
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5.5. Power Series.

Theorem 5.8. (Taylor’s Theorem) Suppose f is holomorphic on D(a;R).
Then there exist constants cn so that

f(z) =
∞
∑

n=0

cn(z − a)n

and

cn =
1

2πi

∫

γ

f(w)

(w − a)n+1
dw =

f (n)(a)

n!

where γ is the circle γ(a; r) for 0 < r < R.

Proof. Fix z ∈ D(a;R) and choose r so that |z − a| < r < R Take

γ = γ(a; r). Then f(z) = 1
2πi

∫

γ

f(w)
w−z

dw (by Cauchy integral formula).

Since |z − a| < |w − a| for all w ∈ γ,

1

w − z
=

1

w − a

1

1− z−a
w−a

Now apply the binomial expansion:

f(z) =
1

2πi

∫

γ

∞
∑

n=0

(z − a)n

(w − a)n+1
f(w)dw

Since γ is compact and f is continuous, f is bounded. So for some
constant M ,

|
(z − a)n

(w − a)n+1
f(w) |≤

M

r

(z − a)

r

n

:= Mn.

Since |z − a| < r,
∑

n Mn converges. So (by uniform convergence
theorem) we may interchange summation and integration. So

f(z) =
1

2πi

∞
∑

n=0

(
∫

γ

f(w)

(w − a)n+1
dw

)

(z − a)n.

Hence the theorem follows by Cauchy’s formula for derivatives. �

Example 5.2. Let f be holomorphic on C. Prove that if there are
M > 0 and K > 0, 0 < k ∈ Z such that |f(z)| ≤ M |z|k for |z| ≤ K,
then f is a polynomial of degree ≤ k.

Proof. By Taylor’s theorem f has a power series expansion f(z) =
∑

∞

n=0 cnz
n in any disk with center 0.

cn =
1

2πi

∫

γ(0;R)

f(z)z−n−1dz.
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So if R ≥ K,

|cn| ≤
1

2π
sup{|f(z)z−n−1| : |z| = R}

times the length of γ(0;R). So this is

≤
1

2π
MRk−n−1(2πR).

Since R can be chosen arbitrarily large, we must have cn = 0 for n > k.
Thus f is a polynomial of degree ≤ k. �

Proposition 5.1. Let f(z) =
∑

∞

n=0 anz
n and g(z) =

∑

∞

n=0 bnz
n. Then

f(z)g(z) =
∞
∑

n=0

cnz
n

where cn =
∑n

r=0 arbn−r If the radius of convergence of the power series
for f is R1 and that for g is R2 then the radius of convergence of the
power series for fg is at least the minimum of R1 and R2.

Example 5.3. The power series for exp(z) has infinite radius of con-
vergence (by the Ratio Test).

5.6. Zeros of holomorphic functions.

Definition 5.9. a is an isolated zero of f if there is ǫ > 0 such that
D′(a, ǫ) contains no zeros of f .

Theorem 5.10. (Identity Theorem) Suppose G is a region and f is
holomorphic on G. If the set of zeros of f on G has a limit point in
G then f is zero everywhere in G. (Equivalently the zeros of f are
isolated unless f is zero everywhere.)

Proof. Let a ∈ G with f(a) = 0. By Taylor’s theorem (z) =
∑

∞

n=0 cn(z−
a)n for |z − a| ≤ r. Either all cn = 0 (which implies f = 0 everywhere
in D(a; r)) or there is a smallest m > 0 with cm 6= 0. The series
∑

∞

n=0 cn+m(z − a)n has radius of convergence at least r, and defines a
function g which is continuous in D(a; r) because a power series defines
a holomorphic function inside its radius of convergence. Since g(a) 6= 0
and g is continuous at a, g(z) 6= 0 for z in some disk D(a; ǫ). In the
punctured disk D(a, ǫ \ {a}), f(z) = (z − a)mg(z) is never zero. So a
is not a limit point of the set of zeros of f . Hence if f(a) = 0, either
f = 0 in some disc, or a is not a limit point (in other words there is
some disc where f(z) 6= 0 except for z = a). �

Sketch proof that if there is a limit point of the set of zeros in G,
then f = 0: everywhere in G: Show that the set E of limit points is
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contained in the set Z(f) of the set of zeros and both E and G \E are
open (hence either E = G or E is the empty set since G is connected).
(i) Suppose there is a limit point a for which f(a) 6= 0. Since it is

a limit point, there are disks of radius 1/n containing points an with
f(an) = 0 and |a − an| < 1/n. Since f is continuous this implies
f(a) = 0 contrary to hypothesis. So
(ii) To show both E and G \ E are open: Suppose a ∈ E. Then

f = 0 in some disk D around a (by part 1). So this disk D ⊂ E. So
E is open. To show G \ E is open: Take a ∈ G \ E. Since a is not a
limit point of Z(f) there is a disc D(a; r) in which f is never zero. By
(i) E ⊂ Z(f). Hence D(a; r) ⊂ G \ E.

5.7. Maximum Modulus Theorem.

Theorem 5.11. Suppose f is holomorphic on D(a,R) with |f(z)| ≤
|f(a)| for all z ∈ D(a,R). Then f is constant.

Theorem 5.12. Suppose G is a bounded region, f is holomorphic in G
and continuous on Ḡ. Then |f | attains its maximum on the boundary
of G, in other words on ∂G = Ḡ \G.

Proof of Theorem 5.11: Choose 0 < r < R. By the Cauchy integral
formula

f(a) =
1

2πi

∫

γ(a;r

f(z)

z − a
dz

(γ(t) = reit)

=
1

2πi

∫ 2π

0

(
f(a+ reit)

rieit
(reit)dt

=
1

2π

∫

f(a+ reit)dt.

Hence

|f(a)| ≤
1

2i

∫ 2π

0

|f(a+ reit)|dt ≤ |f(a)|.

(by hypothesis on f).

∫ 2π

0

[

|f(a)| − f(a+ reit)
]

dt = 0.

(The integrand is continuous and ≥ 0, so it must be equal to 0.) This
is true for all r < R. So |f | is constant in D(a;R). So f is also constant
in D(a;R). �

Proof of Theorem 5.12:
Ḡ is closed and bounded, so on Ḡ, |f | is bounded (as it is continuous)

and attains its maximum valueM at some point on Ḡ. Assume |f | does
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not attain M on the boundary ∂G. Then |f(a)| = M for some a ∈ G.
By part (a), f is constant on some disk D(a;R) ⊂ G. Hence f is
constant in G, by the identity theorem. By continuity, f is constant
on Ḡ, so it attains its maximum on ∂G, contradicting the hypothesis.
�

Example 5.4 (Examples). (1) Is it possible to have a holomorphic
function that is equal to 0 everywhere on the real axis?
Answer: No, since the Identity Theorem says that if the set

of zeros has a limit point then f is zero everywhere.
(A limit point is a point p for which any disc containing p, no

matter how small, will contain some points z where f(z) = 0.)
(2) Is it possible to have a holomorphic function which is equal to

1 when z = 1
2n

and equal to −1 when z = 1
2n+1

?

Answer: No, since the set of points { 1
2n
} has a limit point

(namely 0) and f = 1 on those points. Likewise the set of
points { 1

2n+1
} has a limit point (namely 0) and f = −1 on

those points. Looking at the points { 1
2n
} we conclude f = 1

everywhere (by the identity theorem). Likewise looking at the
points { 1

2n+1
} we conclude f = −1 everywhere (by the identity

theorem). This is a contradiction.


