Proof[section]

5. Cauchy integral formula

Theorem 5.1. Suppose f is holomorphic inside and on a positively oriented curve γ . Then if a is a point inside γ ,

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw.$$

Proof. There exists a number r such that the disc D(a, r) is contained in $I(\gamma)$. For any $\epsilon < r$,

$$\int_{\gamma} \frac{f(w)}{w-a} dw = \int_{\gamma(a;\epsilon)} \frac{f(w)}{w-a} dw$$

by the Deformation Theorem. So

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-a} dw - f(a) \mid = \mid \frac{1}{2\pi i} \int_{\gamma(a;\epsilon)} \frac{f(w) - f(a)}{w-a} dw \mid$$
$$= \mid \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a+\epsilon e^{i\theta}) - f(a)}{\epsilon e^{i\theta}} i\epsilon e^{i\theta} d\theta \mid$$
$$\leq \frac{1}{2\pi} (2\pi) \sup_{\theta \in [0,2\pi]} \mid f(a+\epsilon e^{i\theta}) - f(a) \mid$$

The right hand side tends to 0 as $\epsilon \to 0$. So the left hand side is 0. \Box

5.1. Liouville's Theorem.

Theorem 5.2. If f is holomorphic on C and is bounded (in other words there exists M for which |f(z)| < M for all z) then f is constant.

Proof. Suppose $|f(w)| \leq M$ for all $w \in \mathbb{C}$. Fix a and b in \mathbb{C} . Take $R \geq 2max\{|a|, |b|\}$ so that $|w - a| \geq R/2$ and $|w - b| \geq R/2$ when |w| = R. By Cauchy's integral formula with $\gamma = \gamma(0; R)$,

$$f(a) - f(b) = \frac{1}{2\pi i} \int_{\gamma} f(w) \left(\frac{1}{w-a} - \frac{1}{w-b}\right) dw$$
$$\frac{a-b}{2\pi} \int_{\gamma} \frac{f(w)}{(w-a)(w-b)} dw.$$

 So

$$f(a) - f(b) \leq \frac{1}{2\pi} 2\pi RM \frac{|a-b|}{(R/2)^2}$$

by the Estimation Theorem. Since R is arbitrarily large, LHS = 0. \Box

5.2. Fundamental theorem of algebra.

Theorem 5.3. Let p be a non-constant polynomial with constant coefficients. Then there exists $w \in \mathbf{C}$ such that p(w) = 0.

Proof. Suppose not. Then $p(z) \neq 0$ for all z. Since $|p(z)| \to \infty$ as $|z| \to \infty$, there exists R such that 1/|p(z)| < 1 for |z| > R. On $\overline{D}(0,R)$, 1/p(z) is continuous and hence bounded. Hence 1/p(z) is bounded on **C**. It is also holomorphic, so constant by Liouville. \Box

5.3. Cauchy's formula.

Theorem 5.4. Suppose f is holomorphic inside and on a positively oriented contour γ . Let a lie inside γ . Then $f^{(n)}(a)$ exists for $n = 1, 2, \ldots$ and

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$$

Corollary 5.5. If f is holomorphic in an open set G, then f has derivatives of all orders in G.

Proof. For n = 0 this is Cauchy's integral formula. We assume it is true for n = k and prove it for n = k + 1. By deformation theorem, we may replace γ by $\gamma(a; 2r)$. Take |h| < r. By Cauchy's formula for n = k,

$$\begin{aligned} f^{(k)}(a+h) - f^{(k)}(a) &= \frac{k!}{2\pi i} \int dw f(w) \left(\frac{1}{(w-a-h)^{k+1}} - \frac{1}{(w-a)^{k+1}} \right) \\ &= \frac{(k+1)!}{2\pi i} \int_{\gamma} f(w) \left(\int_{[a,a+h]} (w-\zeta)^{-k-2} d\zeta \right) dw \end{aligned}$$

(by Fundamental Theorem of Calculus for $f(z) = \frac{1}{z^{k+1}}$). Define

$$F(h) = \frac{f^{(k)}(a+h) - f^{(k)}(a)}{h} = \frac{(k+1)!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{(k+2)}} dw$$
$$= \frac{(k+2)!}{2\pi i h} \int_{\gamma} f(w) \left(\int_{\zeta \in [a,a+h]} \left(\int_{v \in [a,\zeta]} (w-v)^{-k-3} dv \right) dz \right) dw$$

Since f is holomorphic (and hence continuous), it is bounded by some M on γ (since γ is compact). For $v \in [a, \zeta], \zeta \in [a, h], |w - v| \ge r$ for all $w \in \gamma$. Also $|zeta - a| \le h$. Hence by the estimation theorem

$$|F(h)| \le \frac{(k+2)!}{2\pi|h|} \frac{M|h|^2}{r^{k+3}} 4\pi r.$$

So $F(h) \to 0$ as $h \to 0$.

Theorem 5.6 (Morera's Theorem). Suppose f is continuous in an open set G and $\int_{\gamma} f(z)dz = 0$ for all triangles γ in G. Then f is holomorphic on G.

Proof. Let $a \in G$. Choose r so that $D(a;r) \subset G$. Since D(a;r) is convex, the Antiderivative Theorem implies that there exists a holomorphic function F such that F' = f. Since F is holomorphic on D(a,r), so is f. Since a is arbitrary, f is holomorphic on G. \Box

Example 5.1. Use of Cauchy integral formula:

1.

$$\int_{\gamma(i;1)} \frac{z^2}{z^2 + 1} dz$$

We need to write the integrand as $\frac{f(z)}{z-a}$ where f is holomorphic at a. Take

$$f(z) = \frac{z^2}{z+i}$$

since $z^2 + 1 = (z + i)(z - i)$. Then

$$\int \gamma(i;1) \frac{f(z)}{z-a} dz = 2\pi i f(a)$$

so

$$\frac{z^2}{(z+i)(z-i)}dz = 2\pi i \frac{z^2}{z+i} = -\pi$$

 $2.\int_{\gamma(0;1)}\frac{e^z}{z^3}dz$

Rewrite as $\int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$ which equals $2\pi f^{(n)}(a)$. We check that f is holomorphic inside and on a contour enclosing a. Take $f(z) = e^z, n = 2$

$$f'(z) = f''(z) = e^z \text{ so the integral is } \frac{2\pi i}{2!} f^{(2)}(0) = \pi i$$
3.
$$\int \frac{\operatorname{Re}(z)}{2!} dz$$

$$\int_{\gamma(0;1)} \frac{\operatorname{Re}(z)}{z - 1/2} dz$$

cannot be evaluated directly using the Cauchy integral formula since $\operatorname{Re}(z)$ is not a holomorphic function of z. But $\gamma(0;1)$ is the unit circle so $\operatorname{Re}(z) = (z + \overline{z})/2$ and if |z| = 1, $\overline{z} = z^{-1}$ so $\operatorname{Re}(z) = (z + z^{-1})/2$. So on $\gamma(0;1)$

$$\frac{\operatorname{Re}(z)}{z-1/2} = \frac{z^2+1}{2z(z-1/2)}$$
$$= \frac{z}{2(z-1/2)} + \frac{1}{z(2z-1)}$$
$$= \frac{1}{2}\frac{(z-1/2)+1/2}{z-1/2} + \frac{A}{z} + \frac{B}{2z-1}$$

$$= \frac{1}{2} + \frac{1}{2}\frac{1}{2z-1} + \frac{A(2z-1) + Bz}{z(2z-1)}$$
$$= \frac{1}{2} + \frac{1}{2}\frac{1}{2z-1} + \frac{(2A+B)z - A}{z(2z-1)}$$

Solving, A = -1 and B = -2A = 2. So our expression is

$$= \frac{1}{2} + \frac{1}{2} \frac{1}{2z - 1} + \frac{(-1)}{z} + \frac{2}{(2z - 1)}$$
$$= \frac{1}{2} - \frac{1}{z} + \frac{5}{4(z - 1/2)}$$

So by Cauchy's formula

$$\int_{\gamma(0;1)} \frac{\operatorname{Re}(z)}{z - 1/2} dz = 2\pi i/4$$

5.4. Poisson integral formula.

Theorem 5.7. Suppose f is holomorphic inside and on $\gamma(0; 1)$. Then

$$f(re^{i\theta} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2} f(e^{it}) dt.$$

Proof. Fix $z = re^{i\theta}$. Apply Cauchy integral formula to $g(z) = f(z)\phi(z)$ where

$$\phi(w) = \frac{1 - r^2}{1 - w\bar{z}}.$$

Note that $\phi(z) = 1$. Then

$$f(z) = f(z)\phi(z)$$

$$= \frac{1 - w^2}{2\pi i} \int_{\gamma(0;1)} \frac{f(w)}{(w - z)(1 - w\bar{z})} dw$$

$$= \frac{1 - r^2}{2\pi i} \int_0^{2\pi} \frac{f(e^{it})ie^{it}dt}{(e^{it} - re^{i\theta})(1 - re^{it}e^{-i\theta})}$$

as required.

5.5. Power Series.

Theorem 5.8. (Taylor's Theorem) Suppose f is holomorphic on D(a; R). Then there exist constants c_n so that

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

and

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw = \frac{f^{(n)}(a)}{n!}$$

where γ is the circle $\gamma(a; r)$ for 0 < r < R.

Proof. Fix $z \in D(a; R)$ and choose r so that |z - a| < r < R Take $\gamma = \gamma(a; r)$. Then $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw$ (by Cauchy integral formula). Since |z - a| < |w - a| for all $w \in \gamma$,

$$\frac{1}{w-z} = \frac{1}{w-a} \frac{1}{1 - \frac{z-a}{w-a}}$$

Now apply the binomial expansion:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}} f(w) dw$$

Since γ is compact and f is continuous, f is bounded. So for some constant M,

$$\frac{(z-a)^n}{(w-a)^{n+1}}f(w) \le \frac{M}{r}\frac{(z-a)^n}{r} := M_n.$$

Since |z - a| < r, $\sum_{n} M_{n}$ converges. So (by uniform convergence theorem) we may interchange summation and integration. So

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \right) (z-a)^n.$$

Hence the theorem follows by Cauchy's formula for derivatives. \Box

Example 5.2. Let f be holomorphic on \mathbb{C} . Prove that if there are M > 0 and K > 0, $0 < k \in \mathbb{Z}$ such that $|f(z)| \leq M|z|^k$ for $|z| \leq K$, then f is a polynomial of degree $\leq k$.

Proof. By Taylor's theorem f has a power series expansion $f(z) = \sum_{n=0}^{\infty} c_n z^n$ in any disk with center 0.

$$c_n = \frac{1}{2\pi i} \int_{\gamma(0;R)} f(z) z^{-n-1} dz.$$

So if $R \geq K$,

$$|c_n| \le \frac{1}{2\pi} \sup\{|f(z)z^{-n-1}| : |z| = R\}$$

times the length of $\gamma(0; R)$. So this is

$$\leq \frac{1}{2\pi} M R^{k-n-1} (2\pi R).$$

Since R can be chosen arbitrarily large, we must have $c_n = 0$ for n > k. Thus f is a polynomial of degree $\leq k$.

Proposition 5.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$. Then $f(z)g(z) = \sum_{n=0}^{\infty} c_n z^n$

where $c_n = \sum_{r=0}^n a_r b_{n-r}$ If the radius of convergence of the power series for f is R_1 and that for g is R_2 then the radius of convergence of the power series for fg is at least the minimum of R_1 and R_2 .

Example 5.3. The power series for $\exp(z)$ has infinite radius of convergence (by the Ratio Test).

5.6. Zeros of holomorphic functions.

Definition 5.9. *a* is an isolated zero of *f* if there is $\epsilon > 0$ such that $D'(a, \epsilon)$ contains no zeros of *f*.

Theorem 5.10. (Identity Theorem) Suppose G is a region and f is holomorphic on G. If the set of zeros of f on G has a limit point in G then f is zero everywhere in G. (Equivalently the zeros of f are isolated unless f is zero everywhere.)

Proof. Let $a \in G$ with f(a) = 0. By Taylor's theorem $(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ for $|z-a| \leq r$. Either all $c_n = 0$ (which implies f = 0 everywhere in D(a;r)) or there is a smallest m > 0 with $c_m \neq 0$. The series $\sum_{n=0}^{\infty} c_{n+m} (z-a)^n$ has radius of convergence at least r, and defines a function g which is continuous in D(a;r) because a power series defines a holomorphic function inside its radius of convergence. Since $g(a) \neq 0$ and g is continuous at $a, g(z) \neq 0$ for z in some disk $D(a;\epsilon)$. In the punctured disk $D(a, \epsilon \setminus \{a\}), f(z) = (z-a)^m g(z)$ is never zero. So ais not a limit point of the set of zeros of f. Hence if f(a) = 0, either f = 0 in some disc, or a is not a limit point (in other words there is some disc where $f(z) \neq 0$ except for z = a).

Sketch proof that if there is a limit point of the set of zeros in G, then f = 0: everywhere in G: Show that the set E of limit points is

6

contained in the set Z(f) of the set of zeros and both E and $G \setminus E$ are open (hence either E = G or E is the empty set since G is connected).

(i) Suppose there is a limit point a for which $f(a) \neq 0$. Since it is a limit point, there are disks of radius 1/n containing points a_n with $f(a_n) = 0$ and $|a - a_n| < 1/n$. Since f is continuous this implies f(a) = 0 contrary to hypothesis. So

(ii) To show both E and $G \setminus E$ are open: Suppose $a \in E$. Then f = 0 in some disk D around a (by part 1). So this disk $D \subset E$. So E is open. To show $G \setminus E$ is open: Take $a \in G \setminus E$. Since a is not a limit point of Z(f) there is a disc D(a; r) in which f is never zero. By (i) $E \subset Z(f)$. Hence $D(a; r) \subset G \setminus E$.

5.7. Maximum Modulus Theorem.

Theorem 5.11. Suppose f is holomorphic on D(a, R) with $|f(z)| \le |f(a)|$ for all $z \in D(a, R)$. Then f is constant.

Theorem 5.12. Suppose G is a bounded region, f is holomorphic in G and continuous on \overline{G} . Then |f| attains its maximum on the boundary of G, in other words on $\partial G = \overline{G} \setminus G$.

Proof of Theorem 5.11: Choose 0 < r < R. By the Cauchy integral formula

$$f(a) = \frac{1}{2\pi i} \int_{\gamma(a;r)} \frac{f(z)}{z-a} dz$$

 $(\gamma(t) = re^{it})$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \left(\frac{f(a+re^{it})}{rie^{it}}(re^{it})dt\right)$$
$$= \frac{1}{2\pi} \int f(a+re^{it})dt.$$

Hence

$$|f(a)| \le \frac{1}{2i} \int_0^{2\pi} |f(a + re^{it})| dt \le |f(a)|.$$

(by hypothesis on f).

$$\int_0^{2\pi} \left[|f(a)| - f(a + re^{it}) \right] dt = 0.$$

(The integrand is continuous and ≥ 0 , so it must be equal to 0.) This is true for all r < R. So |f| is constant in D(a; R). So f is also constant in D(a; R).

Proof of Theorem 5.12:

 \overline{G} is closed and bounded, so on \overline{G} , |f| is bounded (as it is continuous) and attains its maximum value M at some point on \overline{G} . Assume |f| does

not attain M on the boundary ∂G . Then |f(a)| = M for some $a \in G$. By part (a), f is constant on some disk $D(a; R) \subset G$. Hence f is constant in G, by the identity theorem. By continuity, f is constant on \overline{G} , so it attains its maximum on ∂G , contradicting the hypothesis. \Box

Example 5.4 (Examples). (1) Is it possible to have a holomorphic function that is equal to 0 everywhere on the real axis?

Answer: No, since the Identity Theorem says that if the set of zeros has a limit point then f is zero everywhere.

(A limit point is a point p for which any disc containing p, no matter how small, will contain some points z where f(z) = 0.)

(2) Is it possible to have a holomorphic function which is equal to 1 when $z = \frac{1}{2n}$ and equal to -1 when $z = \frac{1}{2n+1}$? Answer: No, since the set of points $\{\frac{1}{2n}\}$ has a limit point

Answer: No, since the set of points $\{\frac{1}{2n}\}$ has a limit point (namely 0) and f = 1 on those points. Likewise the set of points $\{\frac{1}{2n+1}\}$ has a limit point (namely 0) and f = -1 on those points. Looking at the points $\{\frac{1}{2n}\}$ we conclude f = 1 everywhere (by the identity theorem). Likewise looking at the points $\{\frac{1}{2n+1}\}$ we conclude f = -1 everywhere (by the identity theorem). This is a contradiction.