2 Chapter 4: Cauchy's Theorem

Theorem 2.1 Let γ be a positively oriented contour. Suppose $D(a ; r) \subset$ $I(\gamma) . f$ is holomorphic inside and on γ except maybe at a. Then $\int_{\gamma} f(z) d z=$ $\int_{\gamma(a ; r)} f(z) d z$.

For example, these hypotheses permit $f(z)=\frac{1}{z-a}$.
Proof 2.1 Take a line ℓ through a which passes through no corner points of γ (points where one line segment joins another) and which is nowhere tangent to γ. Let z_{1} and z_{2} be points where ℓ meets the circle $|z-a|=r$. Also let w_{1} and w_{2} be points on $\gamma \cap \ell$ such that z_{1} lies between a and z_{1} and its absolute value is as small as possible. Form closed contours γ_{1}, γ_{2} and then by Cauchy's theorem $\int_{\gamma_{1}} f d z=0$. Similarly $\int_{\gamma_{2}} f d z=0$. But then $\int_{\gamma_{1}} f+\int_{\gamma_{2}} f=\int_{\gamma}-\int_{\gamma(a ; r)}$ since the integrals along line segments cancel.

Definition 2.2 The winding number of a closed path γ around a point w is

$$
n(\gamma ; \omega)=\frac{1}{2 \pi i} \int \frac{1}{z-w} d z
$$

Example 2.1 Let $\gamma(t)=e^{i t}$ and $w=0$. Then $n(\gamma ; 0)=1$. (The curve winds once around the origin.) But if instead $\gamma(t)=e^{2 i t}$ for $0 \leq t \leq 2 \pi$, then $n(\gamma ; 0)=2$. (The curve winds twice around the origin.)

Theorem 2.3 (Cauchy III) Suppose G is a region and f is holomorphic on G. For any closed path γ in G such that $n(\gamma ; w)=0$ for all $w \notin G$, $\int_{\gamma} f(z) d z=0$.

Theorem 2.4 (Cauchy's theorem) Suppose f is holomorphic inside and on a contour γ. Then $\int_{\gamma} f(z) d z=0$.

Theorem 2.5 (Antiderivative theorem) Suppose G is a convex region and f is holomorphic on G. Then there is F holomorphic on G such that $F^{\prime}=f$.

2.1 Logarithms

Theorem 2.6 Suppose G is an open disc not containing 0 . Then there exists a function $f=\log _{G}$ such that $e^{f(z)}=z \forall z \in G$ and $f(z)-f(a)=\int_{\gamma} \frac{1}{w} d w$, where γ is any path in G with endpoints a and z. f is uniquely determined up to $f \mapsto f+2 \pi i \mathbf{Z}$.

Proof 2.2 The Antiderivative Theorem implies there is a holomorphic function f such that $\frac{d f}{d z}=\frac{1}{z}$ everywhere in G.

$$
\frac{d}{d z}\left(z e^{-f(z)}\right)=e^{-f(z)}-z f^{\prime}(z) e^{-f(z)}=0
$$

So

$$
z e^{-f z}=C
$$

or

$$
C e^{f(z)}=z
$$

By adding a constant to f, we may assume $C=1$. So

$$
f(z)-f(a)=\int_{\gamma} \frac{d w}{w}
$$

by the Antiderivative Theorem.
Theorem 2.7 (Jordan Curve Theorem) Let γ be a contour. Then γ divides the complex plane into two components $I(\gamma)$ and $O(\gamma)$, where $I(\gamma)$ and $O(\gamma)$ are both connected, $I(\gamma)$ is bounded and $O(\gamma)$ is unbounded.

Sketch proof of Cauchy's theorem: (This assumes a stronger condition on f which we shall eventually deduce from the hypothesis that f is holomorphic, rather than assuming it.)

Proof 2.3 Recall Green's theorem from MATB42: Suppose γ is a contour bounding a region R, so interior points of R are on the left of γ. Suppose P and Q are real-valued functions and $P, Q, \frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ are continuous in R. Then

$$
\int_{\gamma} P d x+Q d y=\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Now consider a C-valued function

$$
f(z)=u(x, y)+i v(x, y)
$$

holomorphic in R. Assume also that $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous. (NOTE: Later we will prove the theorem without assuming the partial derivatives of u and v are continuous.) Then $\int_{\gamma} f(z) d z=\int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y)$. By Green's theorem this equals

$$
\int_{R}\left(-v_{x}-u_{y}\right) d x d y+i \int_{R}\left(u_{x}-v_{y}\right) d x d y
$$

But by the Cauchy-Riemann equations, the integrands are zero, so $\int_{\gamma} f(z) d z=$ 0 .

Proof 2.4 Prove first for a triangle: The Fundamental Theorem of Calculus implies that $\int_{\tilde{\gamma}} p(z) d z=0$ for a polynomial p and a triangular contour $\tilde{\gamma}$. Near a point Z, approximate f by $p(z)=f(Z)+(z-Z) f^{\prime}(Z)$. Replace $\int_{\gamma} f(z) d z$ by the sum of integrals around small triangles where $p(z)$ is a good approximation to $f(z)$. Let $[p, q, r]$ be the triangle with vertices p, q, r. Let $\gamma=[u, v, w]$, and let $u^{\prime}, v^{\prime}, w^{\prime}$ be the midpoints of $[v, w],[w, u]$ and $[u, v]$ respectively. Define $\gamma^{0}=\left[u^{\prime}, v^{\prime}, w^{\prime}\right], \gamma^{1}=\left[u, w^{\prime}, v^{\prime}\right], \gamma^{2}=\left[w, u^{\prime}, w^{\prime}\right], \gamma^{3}=$ $\left[w, v^{\prime}, u^{\prime}\right]$. So $I=\int_{\gamma} f(z) d z$

$$
=\sum_{k=0}^{3} \int_{\gamma}^{k} f(z) d z .
$$

For at least one k,

$$
\left|\int_{\gamma^{k}} f(z) d z\right| \geq|I| / 4
$$

Relabel this triangle as γ_{1}. Repeat this procedure with γ^{1} in place of γ. We get a sequence of triangles such that

1. $\gamma_{0}=\gamma$
2. For all $n, \triangle_{n+1} \subset \triangle_{n}$ (we are assuming \triangle_{n} is a closed triangle with γ_{n} as its boundary)
3. The length of γ_{n} is $2^{-n} L$ where L is the length of γ
4. $4^{-n}|I| \leq\left|\int_{\gamma_{n}} f(z) d z\right|$ for all $n \geq 0$.
$\cap_{n=0}^{\infty} \triangle_{n}$ contains a point Z common to all the \triangle_{n}.
Fix $\epsilon>0 . f$ is differentiable at Z so for some r,

$$
\begin{equation*}
\left|f(z)-f(Z)-(z-Z) f^{\prime}(Z)\right|<\epsilon|z-Z| \tag{1}
\end{equation*}
$$

for all $z \in D(Z ; r)$. Choose $N, D(Z ; r)$ so that $\triangle^{N} \subset D(Z ; r)$.

$$
\begin{equation*}
|z-Z| \subset 2^{-N} L \tag{2}
\end{equation*}
$$

for all $z \in \triangle_{N}$. Hence

$$
\begin{equation*}
\int_{z \in \gamma_{N}}\left|f(Z)+(z-Z) f^{\prime}(Z)\right| d z=0 \tag{3}
\end{equation*}
$$

So by (1)-(3) and the Estimation theorem,

$$
\left|\int_{\gamma_{N}} f(z) d z\right| \leq \epsilon\left(2^{-N}\right) L \times \operatorname{length}\left(\gamma_{N}\right)=\epsilon\left(2^{-N} L\right)^{2}
$$

By item (4) in above list of properties of the sequence of triangles, $|I| \leq \epsilon L^{2}$. Since ϵ is arbitrary, $I=0$.

2.2 Indefinite integral theorem

Theorem 2.8 Let f be a continuous complex valued function on a convex region G such that $\int_{\gamma} f(z) d z=0$ for any triangle γ in G. Let a be an arbitrary point of G. Then the function F, defined by

$$
F(z)=\int_{[a, z]} f(w) d w
$$

is holomorphic in G with $F^{\prime}=f$.
Proof 2.5 Fix $z \in G$ and $D(z ; r) \subset G$ so that if $|h|<r$ then $z+h \in G$. Compute $\lim _{h \rightarrow 0}(F(z+h)-F(z)) / h$. We will show this equals $f(z)$. For $|h|<r,[a, z],[z, z+h]$ and $[a, z+h]$ all lie in G since G is convex. By hypothesis $\int_{\gamma} f=0$ if γ is the triangle $[a, z, z+h]$. Hence

$$
F(z+h)-F(z)=\int_{[a, z+h]} f(w) d w-\int_{[a, z]} f(w) d w=\int_{[z, z+h]} f(w) d w
$$

Also

$$
\int_{[z, z+h]} d w=h .
$$

So

$$
\begin{gathered}
\left|\frac{F(z+h)-}{} \begin{array}{c}
F(z) \\
h
\end{array} f(z)\right|=\frac{1}{|h|}\left|\int_{[z, z+h]}[f(w)-f(z)] d w\right| \\
\leq \frac{1}{|h|}|h| \sup _{w \in[z, z+h]}[f(w)-f(z)]
\end{gathered}
$$

which tends to 0 as $h \rightarrow 0$, by continuity of f at z.

2.3 Antiderivative Theorem

Theorem 2.9 Let G be a convex region and let f be holomorphic on G. Then there exists F holomorphic on G such that $F^{\prime}=f$.
(Combine Cauchy's theorem for triangles with the indefinite integral theorem. By Cauchy's theorem, f satisfies the hypotheses for the indefinite integrals theorem.)

2.4 Cauchy theorem for convex region

Theorem 2.10 Let G be a convex region, and f holomorphic on G. Then $\int_{\gamma} f(z) d z=0$ for any closed path γ in G.

Proof 2.6 Combine antiderivative theorem with Fundamental Theorem of Calculus. By antiderivative theorem, $f=F^{\prime}$. By FTC, $\int_{\gamma} F^{\prime}=0$.

2.5 Cauchy's theorem

Theorem 2.11 Suppose f is holomorphic inside and on a contour γ. Then $\int_{\gamma} f(z) d z=0$.

Proof 2.7 First suppose γ is a polygon. Decompose γ into a union of triangles (see text for proof that this is possible). Hence $\int_{\gamma} f(z) d z=\sum_{k=1}^{N} \int_{\gamma_{k}} f(z) d z$ for triangles γ_{k}. Note that the integrals along the inserted segments cancel out.

Let γ be any contour, and G an open set containing $\gamma^{*} \cup I(\gamma)$ on which f is holomorphic. Approximate γ by a polygonal contour. Cover γ^{*} with disks $D_{k}=D\left(\gamma\left(t_{k}\right) ; m\right)\left(k=0, \ldots, N, t_{0}<\ldots<t_{N}\right)$, with $\gamma\left(t_{0}\right)=\gamma\left(t_{N}\right)$. WLOG each γ_{k} is a line segment or a circular arc, and the line segments [$\gamma\left(t_{k}\right), \gamma\left(t_{k+1}\right)$] between $\gamma\left(t_{k}\right)$ and $\gamma\left(t_{k+1}\right)$ join to form a polygonal contour $\tilde{\gamma}$ for which $\tilde{\gamma}^{*} \cup I(\tilde{\gamma}) \subset \cup_{k=0}^{N} D_{k} \cup I(\gamma)$ so it is in G. Hence $\int_{\tilde{\gamma}} f(z) d z=0$. Also for all $k \gamma_{k} \cup\left(-\tilde{\gamma_{k}}\right)$ is a closed path in the convex region D_{k}. (Here the minus sign denotes the same curve with the opposite orientation.) So by Cauchy for convex sets, $\int_{\gamma_{k}} f(z) d z=\int_{\tilde{\gamma_{k}}} f(z) d z$. Hence

$$
\int_{\gamma} f(z) d z=\sum_{k=0}^{N-1} \int_{\gamma_{k}} f(z) d z=\sum_{k=0}^{N-1} \int_{\tilde{\gamma}_{k}} f(z) d z=\int_{\tilde{\gamma}} f(z) d z=0 .
$$

Definition 2.12 (Positively oriented contour) A contour is positively oriented if, as t increases, $\gamma(t)$ moves counterclockwise around any point in $I(\gamma)$.

Definition 2.13 (Simply connected) A region C is simply connected if any closed path in C can be shrunk to a point continuously.

Theorem 2.14 (Cauchy II) Suppose f is holomorphic in a simply connected region G. Then $\int_{\gamma} f(z) d z=0$ for every closed path γ in G.

Example $2.2 f(z)=1 / z$ is holomorphic on $\mathbf{C} \backslash\{\mathbf{0}\}$, and $\gamma(t)=e^{i t}$. We know that $\int_{\gamma} d z / z=2 \pi i \neq 0$ so $\mathbf{C} \backslash\{\mathbf{0}\}$ is not simply connected.

