
2 Chapter 4: Cauchy’s Theorem

Theorem 2.1 Let γ be a positively oriented contour. Suppose D(a; r) ⊂
I(γ). f is holomorphic inside and on γ except maybe at a. Then

∫

γ f(z)dz =
∫

γ(a;r) f(z)dz.

For example, these hypotheses permit f(z) = 1
z−a

.

Proof 2.1 Take a line ℓ through a which passes through no corner points
of γ (points where one line segment joins another) and which is nowhere
tangent to γ. Let z1 and z2 be points where ℓ meets the circle |z − a| = r.
Also let w1 and w2 be points on γ ∩ ℓ such that z1 lies between a and z1
and its absolute value is as small as possible. Form closed contours γ1, γ2
and then by Cauchy’s theorem

∫

γ1
fdz = 0. Similarly

∫

γ2
fdz = 0. But then

∫

γ1
f +

∫

γ2
f =

∫

γ −
∫

γ(a;r) since the integrals along line segments cancel.

Definition 2.2 The winding number of a closed path γ around a point w is

n(γ;ω) =
1

2πi

∫ 1

z − w
dz.

Example 2.1 Let γ(t) = eit and w = 0. Then n(γ; 0) = 1. (The curve
winds once around the origin.) But if instead γ(t) = e2it for 0 ≤ t ≤ 2π,
then n(γ; 0) = 2. (The curve winds twice around the origin.)

Theorem 2.3 (Cauchy III) Suppose G is a region and f is holomorphic
on G. For any closed path γ in G such that n(γ;w) = 0 for all w /∈ G,
∫

γ f(z)dz = 0.

Theorem 2.4 (Cauchy’s theorem) Suppose f is holomorphic inside and
on a contour γ. Then

∫

γ f(z)dz = 0.

Theorem 2.5 (Antiderivative theorem) Suppose G is a convex region
and f is holomorphic on G. Then there is F holomorphic on G such that
F ′ = f.
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2.1 Logarithms

Theorem 2.6 Suppose G is an open disc not containing 0. Then there exists
a function f = logG such that ef(z) = z ∀z ∈ G and f(z) − f(a) =

∫

γ
1
w
dw,

where γ is any path in G with endpoints a and z. f is uniquely determined
up to f 7→ f + 2πiZ.

Proof 2.2 The Antiderivative Theorem implies there is a holomorphic func-
tion f such that df

dz
= 1

z
everywhere in G.

d

dz

(

ze−f(z)
)

= e−f(z) − zf ′(z)e−f(z) = 0.

So
ze−fz = C

or
Cef(z) = z.

By adding a constant to f , we may assume C = 1. So

f(z)− f(a) =
∫

γ

dw

w

by the Antiderivative Theorem.

Theorem 2.7 (Jordan Curve Theorem) Let γ be a contour. Then γ di-
vides the complex plane into two components I(γ) and O(γ), where I(γ) and
O(γ) are both connected, I(γ) is bounded and O(γ) is unbounded.

Sketch proof of Cauchy’s theorem: (This assumes a stronger condition on f
which we shall eventually deduce from the hypothesis that f is holomorphic,
rather than assuming it.)

Proof 2.3 Recall Green’s theorem from MATB42: Suppose γ is a contour
bounding a region R, so interior points of R are on the left of γ. Suppose
P and Q are real-valued functions and P,Q, ∂P

∂x
, ∂P
∂y
, ∂Q
∂x
, ∂Q
∂y

are continuous in
R. Then

∫

γ
Pdx+Qdy =

∫

R

(

∂Q

∂x
−

∂P

∂y

)

dxdy.

Now consider a C- valued function

f(z) = u(x, y) + iv(x, y)
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holomorphic in R. Assume also that ux, uy, vx, vy are continuous. (NOTE:
Later we will prove the theorem without assuming the partial derivatives of
u and v are continuous.) Then

∫

γ f(z)dz =
∫

γ(udx− vdy) + i
∫

γ(vdx+ udy).
By Green’s theorem this equals

∫

R
(−vx − uy) dxdy + i

∫

R
(ux − vy) dxdy.

But by the Cauchy-Riemann equations, the integrands are zero, so
∫

γ f(z)dz =
0.

Proof 2.4 Prove first for a triangle: The Fundamental Theorem of Calculus
implies that

∫

γ̃ p(z)dz = 0 for a polynomial p and a triangular contour γ̃.
Near a point Z, approximate f by p(z) = f(Z) + (z − Z)f ′(Z). Replace
∫

γ f(z)dz by the sum of integrals around small triangles where p(z) is a good
approximation to f(z). Let [p, q, r] be the triangle with vertices p, q, r. Let
γ = [u, v, w], and let u′, v′, w′ be the midpoints of [v, w], [w, u] and [u, v]
respectively. Define γ0 = [u′, v′, w′], γ1 = [u, w′, v′], γ2 = [w, u′, w′], γ3 =
[w, v′, u′]. So I =

∫

γ f(z)dz

=
3
∑

k=0

∫ k

γ
f(z)dz.

For at least one k,

|
∫

γk

f(z)dz |≥ |I|/4.

Relabel this triangle as γ1. Repeat this procedure with γ1 in place of γ. We
get a sequence of triangles such that

1. γ0 = γ

2. For all n, △n+1 ⊂ △n (we are assuming △n is a closed triangle with
γn as its boundary)

3. The length of γn is 2−nL where L is the length of γ

4. 4−n|I| ≤|
∫

γn
f(z)dz | for all n ≥ 0.

∩∞

n=0△n contains a point Z common to all the △n.
Fix ǫ > 0. f is differentiable at Z so for some r,

| f(z)− f(Z)− (z − Z)f ′(Z) |< ǫ|z − Z| (1)
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for all z ∈ D(Z; r). Choose N,D(Z; r) so that △N ⊂ D(Z; r).

|z − Z| ⊂ 2−NL (2)

for all z ∈ △N . Hence
∫

z∈γN

| f(Z) + (z − Z)f ′(Z) | dz = 0 (3)

So by (1)-(3) and the Estimation theorem,

|
∫

γN

f(z)dz |≤ ǫ(2−N)L× length(γN) = ǫ(2−NL)2.

By item (4) in above list of properties of the sequence of triangles, |I| ≤ ǫL2.
Since ǫ is arbitrary, I = 0.

2.2 Indefinite integral theorem

Theorem 2.8 Let f be a continuous complex valued function on a convex
region G such that

∫

γ f(z)dz = 0 for any triangle γ in G. Let a be an arbitrary
point of G. Then the function F , defined by

F (z) =
∫

[a,z]
f(w)dw,

is holomorphic in G with F ′ = f .

Proof 2.5 Fix z ∈ G and D(z; r) ⊂ G so that if |h| < r then z + h ∈ G.
Compute limh→0(F (z + h) − F (z))/h. We will show this equals f(z). For
|h| < r, [a, z], [z, z + h] and [a, z + h] all lie in G since G is convex. By
hypothesis

∫

γ f = 0 if γ is the triangle [a, z, z + h]. Hence

F (z + h)− F (z) =
∫

[a,z+h]
f(w)dw −

∫

[a,z]
f(w)dw =

∫

[z,z+h]
f(w)dw.

Also ∫

[z,z+h]
dw = h.

So

|
F (z + h)− F (z)

h
− f(z) |=

1

|h|
|
∫

[z,z+h]
[f(w)− f(z)]dw |

≤
1

|h|
|h|supw∈[z,z+h][f(w)− f(z)]

which tends to 0 as h → 0, by continuity of f at z.
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2.3 Antiderivative Theorem

Theorem 2.9 Let G be a convex region and let f be holomorphic on G.
Then there exists F holomorphic on G such that F ′ = f .

(Combine Cauchy’s theorem for triangles with the indefinite integral theorem.
By Cauchy’s theorem, f satisfies the hypotheses for the indefinite integrals
theorem.)

2.4 Cauchy theorem for convex region

Theorem 2.10 Let G be a convex region, and f holomorphic on G. Then
∫

γ f(z)dz = 0 for any closed path γ in G.

Proof 2.6 Combine antiderivative theorem with Fundamental Theorem of
Calculus. By antiderivative theorem, f = F ′. By FTC,

∫

γ F
′ = 0.

2.5 Cauchy’s theorem

Theorem 2.11 Suppose f is holomorphic inside and on a contour γ. Then
∫

γ f(z)dz = 0.

Proof 2.7 First suppose γ is a polygon. Decompose γ into a union of trian-
gles (see text for proof that this is possible). Hence

∫

γ f(z)dz =
∑N

k=1

∫

γk
f(z)dz

for triangles γk. Note that the integrals along the inserted segments cancel
out.

Let γ be any contour, and G an open set containing γ∗ ∪ I(γ) on which
f is holomorphic. Approximate γ by a polygonal contour. Cover γ∗ with
disks Dk = D(γ(tk);m) (k = 0, . . . , N , t0 < . . . < tN), with γ(t0) = γ(tN).
WLOG each γk is a line segment or a circular arc, and the line segments
[γ(tk), γ(tk+1)] between γ(tk) and γ(tk+1) join to form a polygonal contour γ̃
for which γ̃∗∪ I(γ̃) ⊂ ∪N

k=0Dk∪ I(γ) so it is in G. Hence
∫

γ̃ f(z)dz = 0. Also
for all k γk∪(−γ̃k) is a closed path in the convex region Dk. (Here the minus
sign denotes the same curve with the opposite orientation.) So by Cauchy
for convex sets,

∫

γk
f(z)dz =

∫

γ̃k
f(z)dz. Hence

∫

γ
f(z)dz =

N−1
∑

k=0

∫

γk

f(z)dz =
N−1
∑

k=0

∫

γ̃k

f(z)dz =
∫

γ̃
f(z)dz = 0.
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Definition 2.12 (Positively oriented contour) A contour is positively ori-
ented if, as t increases, γ(t) moves counterclockwise around any point in
I(γ).

Definition 2.13 (Simply connected) A region C is simply connected if
any closed path in C can be shrunk to a point continuously.

Theorem 2.14 (Cauchy II) Suppose f is holomorphic in a simply con-
nected region G. Then

∫

γ f(z)dz = 0 for every closed path γ in G.

Example 2.2 f(z) = 1/z is holomorphic on C \ {0}, and γ(t) = eit. We
know that

∫

γ dz/z = 2πi 6= 0 so C \ {0} is not simply connected.
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