2 Chapter 4: Cauchy's Theorem

Theorem 2.1 Let γ be a positively oriented contour. Suppose $D(a;r) \subset I(\gamma)$. f is holomorphic inside and on γ except maybe at a. Then $\int_{\gamma} f(z)dz = \int_{\gamma(a;r)} f(z)dz$.

For example, these hypotheses permit $f(z) = \frac{1}{z-a}$.

Proof 2.1 Take a line ℓ through a which passes through no corner points of γ (points where one line segment joins another) and which is nowhere tangent to γ . Let z_1 and z_2 be points where ℓ meets the circle |z - a| = r. Also let w_1 and w_2 be points on $\gamma \cap \ell$ such that z_1 lies between a and z_1 and its absolute value is as small as possible. Form closed contours γ_1 , γ_2 and then by Cauchy's theorem $\int_{\gamma_1} f dz = 0$. Similarly $\int_{\gamma_2} f dz = 0$. But then $\int_{\gamma_1} f + \int_{\gamma_2} f = \int_{\gamma} - \int_{\gamma(a;r)} since the integrals along line segments cancel.$

Definition 2.2 The winding number of a closed path γ around a point w is

$$n(\gamma;\omega) = \frac{1}{2\pi i} \int \frac{1}{z-w} dz$$

Example 2.1 Let $\gamma(t) = e^{it}$ and w = 0. Then $n(\gamma; 0) = 1$. (The curve winds once around the origin.) But if instead $\gamma(t) = e^{2it}$ for $0 \le t \le 2\pi$, then $n(\gamma; 0) = 2$. (The curve winds twice around the origin.)

Theorem 2.3 (Cauchy III) Suppose G is a region and f is holomorphic on G. For any closed path γ in G such that $n(\gamma; w) = 0$ for all $w \notin G$, $\int_{\gamma} f(z) dz = 0$.

Theorem 2.4 (Cauchy's theorem) Suppose f is holomorphic inside and on a contour γ . Then $\int_{\gamma} f(z)dz = 0$.

Theorem 2.5 (Antiderivative theorem) Suppose G is a convex region and f is holomorphic on G. Then there is F holomorphic on G such that F' = f.

2.1 Logarithms

Theorem 2.6 Suppose G is an open disc not containing 0. Then there exists a function $f = \log_G$ such that $e^{f(z)} = z \ \forall z \in G$ and $f(z) - f(a) = \int_{\gamma} \frac{1}{w} dw$, where γ is any path in G with endpoints a and z. f is uniquely determined up to $f \mapsto f + 2\pi i \mathbf{Z}$.

Proof 2.2 The Antiderivative Theorem implies there is a holomorphic function f such that $\frac{df}{dz} = \frac{1}{z}$ everywhere in G.

$$\frac{d}{dz}\left(ze^{-f(z)}\right) = e^{-f(z)} - zf'(z)e^{-f(z)} = 0.$$

So

$$ze^{-fz} = C$$

or

$$Ce^{f(z)} = z$$

By adding a constant to f, we may assume C = 1. So

$$f(z) - f(a) = \int_{\gamma} \frac{dw}{w}$$

by the Antiderivative Theorem.

Theorem 2.7 (Jordan Curve Theorem) Let γ be a contour. Then γ divides the complex plane into two components $I(\gamma)$ and $O(\gamma)$, where $I(\gamma)$ and $O(\gamma)$ are both connected, $I(\gamma)$ is bounded and $O(\gamma)$ is unbounded.

Sketch proof of Cauchy's theorem: (This assumes a stronger condition on f which we shall eventually deduce from the hypothesis that f is holomorphic, rather than assuming it.)

Proof 2.3 Recall Green's theorem from MATB42: Suppose γ is a contour bounding a region R, so interior points of R are on the left of γ . Suppose P and Q are real-valued functions and $P, Q, \frac{\partial P}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ are continuous in R. Then

$$\int_{\gamma} P dx + Q dy = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Now consider a C- valued function

$$f(z) = u(x, y) + iv(x, y)$$

holomorphic in R. Assume also that u_x, u_y, v_x, v_y are continuous. (NOTE: Later we will prove the theorem without assuming the partial derivatives of u and v are continuous.) Then $\int_{\gamma} f(z)dz = \int_{\gamma} (udx - vdy) + i \int_{\gamma} (vdx + udy)$. By Green's theorem this equals

$$\int_{R} \left(-v_x - u_y \right) dx dy + i \int_{R} \left(u_x - v_y \right) dx dy.$$

But by the Cauchy-Riemann equations, the integrands are zero, so $\int_{\gamma} f(z) dz = 0$.

Proof 2.4 Prove first for a triangle: The Fundamental Theorem of Calculus implies that $\int_{\tilde{\gamma}} p(z)dz = 0$ for a polynomial p and a triangular contour $\tilde{\gamma}$. Near a point Z, approximate f by p(z) = f(Z) + (z - Z)f'(Z). Replace $\int_{\gamma} f(z)dz$ by the sum of integrals around small triangles where p(z) is a good approximation to f(z). Let [p,q,r] be the triangle with vertices p,q,r. Let $\gamma = [u, v, w]$, and let u', v', w' be the midpoints of [v, w], [w, u] and [u, v]respectively. Define $\gamma^0 = [u', v', w']$, $\gamma^1 = [u, w', v']$, $\gamma^2 = [w, u', w']$, $\gamma^3 = [w, v', u']$. So $I = \int_{\gamma} f(z)dz$

$$=\sum_{k=0}^3\int_\gamma^k f(z)dz.$$

For at least one k,

$$|\int_{\gamma^k} f(z) dz | \ge |I|/4$$

Relabel this triangle as γ_1 . Repeat this procedure with γ^1 in place of γ . We get a sequence of triangles such that

- 1. $\gamma_0 = \gamma$
- 2. For all $n, \Delta_{n+1} \subset \Delta_n$ (we are assuming Δ_n is a closed triangle with γ_n as its boundary)
- 3. The length of γ_n is $2^{-n}L$ where L is the length of γ
- 4. $4^{-n}|I| \leq |\int_{\gamma_n} f(z)dz|$ for all $n \geq 0$.

 $\bigcap_{n=0}^{\infty} \triangle_n \text{ contains a point } Z \text{ common to all the } \triangle_n.$ Fix $\epsilon > 0$. f is differentiable at Z so for some r,

$$| f(z) - f(Z) - (z - Z)f'(Z) | < \epsilon |z - Z|$$
 (1)

for all $z \in D(Z; r)$. Choose N, D(Z; r) so that $\Delta^N \subset D(Z; r)$.

$$|z - Z| \subset 2^{-N}L \tag{2}$$

for all $z \in \triangle_N$. Hence

$$\int_{z \in \gamma_N} |f(Z) + (z - Z)f'(Z)| \, dz = 0 \tag{3}$$

So by (1)-(3) and the Estimation theorem,

$$\left|\int_{\gamma_N} f(z)dz\right| \leq \epsilon(2^{-N})L \times \operatorname{length}(\gamma_N) = \epsilon(2^{-N}L)^2.$$

By item (4) in above list of properties of the sequence of triangles, $|I| \leq \epsilon L^2$. Since ϵ is arbitrary, I = 0.

2.2 Indefinite integral theorem

Theorem 2.8 Let f be a continuous complex valued function on a convex region G such that $\int_{\gamma} f(z)dz = 0$ for any triangle γ in G. Let a be an arbitrary point of G. Then the function F, defined by

$$F(z) = \int_{[a,z]} f(w) dw,$$

is holomorphic in G with F' = f.

Proof 2.5 Fix $z \in G$ and $D(z;r) \subset G$ so that if |h| < r then $z + h \in G$. Compute $\lim_{h\to 0} (F(z+h) - F(z))/h$. We will show this equals f(z). For |h| < r, [a, z], [z, z+h] and [a, z+h] all lie in G since G is convex. By hypothesis $\int_{\gamma} f = 0$ if γ is the triangle [a, z, z+h]. Hence

$$F(z+h) - F(z) = \int_{[a,z+h]} f(w)dw - \int_{[a,z]} f(w)dw = \int_{[z,z+h]} f(w)dw.$$

Also

$$\int_{[z,z+h]} dw = h.$$

So

$$|\frac{F(z+h) - F(z)}{h} - f(z)| = \frac{1}{|h|} |\int_{[z,z+h]} [f(w) - f(z)]dw|$$
$$\leq \frac{1}{|h|} |h| \sup_{w \in [z,z+h]} [f(w) - f(z)]$$

which tends to 0 as $h \rightarrow 0$, by continuity of f at z.

2.3 Antiderivative Theorem

Theorem 2.9 Let G be a convex region and let f be holomorphic on G. Then there exists F holomorphic on G such that F' = f.

(Combine Cauchy's theorem for triangles with the indefinite integral theorem. By Cauchy's theorem, f satisfies the hypotheses for the indefinite integrals theorem.)

2.4 Cauchy theorem for convex region

Theorem 2.10 Let G be a convex region, and f holomorphic on G. Then $\int_{\gamma} f(z)dz = 0$ for any closed path γ in G.

Proof 2.6 Combine antiderivative theorem with Fundamental Theorem of Calculus. By antiderivative theorem, f = F'. By FTC, $\int_{\gamma} F' = 0$.

2.5 Cauchy's theorem

Theorem 2.11 Suppose f is holomorphic inside and on a contour γ . Then $\int_{\gamma} f(z) dz = 0$.

Proof 2.7 First suppose γ is a polygon. Decompose γ into a union of triangles (see text for proof that this is possible). Hence $\int_{\gamma} f(z)dz = \sum_{k=1}^{N} \int_{\gamma_k} f(z)dz$ for triangles γ_k . Note that the integrals along the inserted segments cancel out.

Let γ be any contour, and G an open set containing $\gamma^* \cup I(\gamma)$ on which f is holomorphic. Approximate γ by a polygonal contour. Cover γ^* with disks $D_k = D(\gamma(t_k); m)$ $(k = 0, ..., N, t_0 < ... < t_N)$, with $\gamma(t_0) = \gamma(t_N)$. WLOG each γ_k is a line segment or a circular arc, and the line segments $[\gamma(t_k), \gamma(t_{k+1})]$ between $\gamma(t_k)$ and $\gamma(t_{k+1})$ join to form a polygonal contour $\tilde{\gamma}$ for which $\tilde{\gamma}^* \cup I(\tilde{\gamma}) \subset \bigcup_{k=0}^N D_k \cup I(\gamma)$ so it is in G. Hence $\int_{\tilde{\gamma}} f(z)dz = 0$. Also for all $k \gamma_k \cup (-\tilde{\gamma}_k)$ is a closed path in the convex region D_k . (Here the minus sign denotes the same curve with the opposite orientation.) So by Cauchy for convex sets, $\int_{\gamma_k} f(z)dz = \int_{\tilde{\gamma}_k} f(z)dz$. Hence

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{N-1} \int_{\gamma_k} f(z)dz = \sum_{k=0}^{N-1} \int_{\tilde{\gamma_k}} f(z)dz = \int_{\tilde{\gamma}} f(z)dz = 0$$

Definition 2.12 (Positively oriented contour) A contour is positively oriented if, as t increases, $\gamma(t)$ moves counterclockwise around any point in $I(\gamma)$.

Definition 2.13 (Simply connected) A region C is simply connected if any closed path in C can be shrunk to a point continuously.

Theorem 2.14 (Cauchy II) Suppose f is holomorphic in a simply connected region G. Then $\int_{\gamma} f(z)dz = 0$ for every closed path γ in G.

Example 2.2 f(z) = 1/z is holomorphic on $\mathbf{C} \setminus \{\mathbf{0}\}$, and $\gamma(t) = e^{it}$. We know that $\int_{\gamma} dz/z = 2\pi i \neq 0$ so $\mathbf{C} \setminus \{\mathbf{0}\}$ is not simply connected.