2 Chapter 4: Cauchy’s Theorem

Theorem 2.1 Let v be a positively oriented contour. Suppose D(a;r) C
I(%). [ is holomorphic inside and on ~y except maybe at a. Then I, f(z)dz =

f'y(a;r) f(Z)dZ
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For example, these hypotheses permit f(z) =

Proof 2.1 Tuke a line ¢ through a which passes through no corner points
of v (points where one line segment joins another) and which is nowhere
tangent to . Let z; and zy be points where { meets the circle |z — a| = r.
Also let wy and we be points on v N L such that z, lies between a and z
and its absolute value is as small as possible. Form closed contours i, 7
and then by Cauchy’s theorem [, fdz = 0. Similarly [,, fdz = 0. But then
Lo £+ 1 F =1 — [y since the integrals along line segments cancel.

Definition 2.2 The winding number of a closed path ~ around a point w is

n(vy;w) 1/ ! dz.

2meJ z—w

Example 2.1 Let y(t) = € and w = 0. Then n(v;0) = 1. (The curve
winds once around the origin.) But if instead v(t) = e** for 0 < t < 2,
then n(v;0) = 2. (The curve winds twice around the origin.)

Theorem 2.3 (Cauchy III) Suppose G is a region and f is holomorphic
on G. For any closed path v in G such that n(y;w) = 0 for all w ¢ G,

[, f(z)dz=0.

Theorem 2.4 (Cauchy’s theorem) Suppose f is holomorphic inside and
on a contour . Then [, f(z)dz = 0.

Theorem 2.5 (Antiderivative theorem) Suppose G is a conver region
and f is holomorphic on G. Then there is F' holomorphic on G such that
F'=f.



2.1 Logarithms

Theorem 2.6 Suppose G is an open disc not containing 0. Then there exists
a function f = logs such that e/¥) = 2 Vz € G and f(z) — f(a) = I, Ldw,
where v is any path in G with endpoints a and z. f is uniquely determined
up to f— f+2mZ.

Proof 2.2 The Antiderivative Theorem implies there is a holomorphic func-
tion f such that j—f; = i everywhere in G.
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By adding a constant to f, we may assume C = 1. So

1) - 1@ = [ 5

w
by the Antiderivative Theorem.

Theorem 2.7 (Jordan Curve Theorem) Let vy be a contour. Then v di-
vides the complex plane into two components I(y) and O(v), where I(y) and
O(7) are both connected, 1(7y) is bounded and O() is unbounded.

Sketch proof of Cauchy’s theorem: (This assumes a stronger condition on f
which we shall eventually deduce from the hypothesis that f is holomorphic,
rather than assuming it.)

Proof 2.3 Recall Green’s theorem from MATB42: Suppose ~y is a contour
bounding a region R, so interior points of R are on the left of ~v. Suppose

P and Q are real-valued functions and P,Q, 2L, 92 99 99 qre continuous in

Dz By’ Bx’ dy
R. Then

0Q 0P
P — - - .
L dr + Qdy / < y ) dxdy

Now consider a C- valued function
f(2) = u(z,y) +iv(z,y)
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holomorphic in R. Assume also that uy,u,, vy, v, are continuous. (NOTE:
Later we will prove the theorem without assuming the partial derivatives of
u and v are continuous.) Then [ f(z)dz = [ (udx —vdy) +i [ (vdx + udy).
By Green’s theorem this equals

/R (—vy — uy) dedy + 1 /R (uy — vy) dady.

But by the Cauchy-Riemann equations, the integrands are zero, so [, f(z)dz =

0.

Proof 2.4 Prove first for a triangle: The Fundamental Theorem of Calculus
implies that fﬁp(z)dz = 0 for a polynomial p and a triangular contour 7.
Near a point Z, approzimate f by p(z) = f(Z)+ (= — Z)f'(Z). Replace
I f(2)dz by the sum of integrals around small triangles where p(z) is a good
approzimation to f(z). Let [p,q,r] be the triangle with vertices p,q,r. Let
v = [u,v,w], and let u',v',w" be the midpoints of [v,w], [w,u] and [u
respectively. Define 4° = [u/, v, w'], v* = [u,w',v'], v* = [w,u/,w'], 7>
[w, v, u']. So I = [ f(z)dz

=

= Z/f f(z)dz.

k=0
For at least one k,

| [ Gz = 111/4

Relabel this triangle as v,. Repeat this procedure with ' in place of v. We
get a sequence of triangles such that

1. v=7

2. For alln, Ny C A, (we are assuming [\, is a closed triangle with
Yo as its boundary)

3. The length of v, is 27" L where L s the length of v
4. 4TI <] [, f(z)dz | for alln > 0.

N oA, contains a point Z common to all the A\,,.
Fix e > 0. f is differentiable at Z so for some r,

| f(2) = f(2) = (2 = 2)(Z) |[< €|z = Z| (1)
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for all z € D(Z;r). Choose N, D(Z;r) so that AN C D(Z;r).
lz—Z| c2™NL (2)
for all z € Ay. Hence
| 11@)+ - 2f(2)|dz=0 0
So by (1)-(3) and the Estimation theorem,

] f(2)dz |[< e(27V)L x length(yy) = e(27 VL)%
TN

By item (/) in above list of properties of the sequence of triangles, |I| < eL?.
Since € is arbitrary, I = 0.

2.2 Indefinite integral theorem

Theorem 2.8 Let f be a continuous complex valued function on a convex
region G such that [, f(2)dz = 0 for any triangle v in G. Let a be an arbitrary
point of G. Then the function F', defined by

F(z) = /H f(w)dw,

is holomorphic in G with F' = f.

Proof 2.5 Fiz z € G and D(z;r) C G so that if |h| < r then z +h € G.
Compute limy_o(F(z + h) — F(z))/h. We will show this equals f(z). For
|h| < r, [a,z], [#,2 + h] and [a,z + k] all lie in G since G is convex. By
hypothesis [, f = 0 if v is the triangle [a, z, 2z + h]. Hence

Hz+m—F@%iéﬂﬂﬂwa—Ammew:A”meﬂw
Also

%’hﬂw:n
% F(z+h) — F(2) | 1
T I =y ) = )]

1
< m|h’8upw€[z,z+h} [f(w) o f(Z)]

which tends to 0 as h — 0, by continuity of f at z.



2.3 Antiderivative Theorem

Theorem 2.9 Let G be a convex region and let f be holomorphic on G.
Then there ezists F' holomorphic on G such that F' = f.

(Combine Cauchy’s theorem for triangles with the indefinite integral theorem.
By Cauchy’s theorem, f satisfies the hypotheses for the indefinite integrals
theorem.)

2.4 Cauchy theorem for convex region

Theorem 2.10 Let G be a convex region, and f holomorphic on G. Then
[, f(2)dz =0 for any closed path v in G.

Proof 2.6 Combine antiderivative theorem with Fundamental Theorem of
Calculus. By antiderivative theorem, f = F'. By FTC, [ F' = 0.

2.5 Cauchy’s theorem

Theorem 2.11 Suppose f is holomorphic inside and on a contour . Then

[, f(z)dz = 0.

Proof 2.7 First suppose v is a polygon. Decompose v into a union of trian-
gles (see text for proof that this is possible). Hence [, f(z)dz = 331, [, f(2)dz
for triangles .. Note that the integrals along the inserted segments cancel
out.

Let v be any contour, and G an open set containing v* U I(y) on which
f is holomorphic. Approzimate v by a polygonal contour. Cover v* with
disks Dy = D(y(tg);m) (k =0,...,N, to < ... < ty), with y(to) = Y(tn).
WLOG each v is a line segment or a circular arc, and the line segments
(Y(tk), v(tks1)] between ~(ty) and y(txs1) join to form a polygonal contour
for which ¥ UI(¥) C UpLgDy UI(y) so it is in G. Hence [5 f(z)dz = 0. Also
for all k v U(—7k) is a closed path in the convex region Dy. (Here the minus

sign denotes the same curve with the opposite orientation.) So by Cauchy
for convex sets, [ f(2)dz = [, f(2)dz. Hence

N-1 N-1

> [ rea=3 [ f(Z)dz:Af(z)dzzo.

k=0 Y Vk k=0 7k

/7 f(z)dz =



Definition 2.12 (Positively oriented contour) A contour is positively ori-
ented if, as t increases, y(t) moves counterclockwise around any point in

I(7).

Definition 2.13 (Simply connected) A region C is simply connected if
any closed path in C' can be shrunk to a point continuously.

Theorem 2.14 (Cauchy II) Suppose f is holomorphic in a simply con-
nected region G. Then [, f(2)dz =0 for every closed path ~y in G.

Example 2.2 f(z) = 1/z is holomorphic on C\ {0}, and v(t) = . We
know that [ dz/z = 2mi # 0 so C\ {0} is not simply connected.



