2 Curves in the complex plane

Definition 2.1 A curve with parameter interval $[\alpha, \beta]$ is a continuous function $\gamma:[\alpha, \beta] \rightarrow \mathbf{C}$. It is called closed if $\gamma(\alpha)=\gamma(\beta)$ and simple if $\alpha \leq s<t \leq \beta$ implies $\gamma(s) \neq \gamma(t)$ for $t-s<\beta-\alpha$ (in other words the curve does not cross itself). It is called smooth if γ has continuous derivatives on $[\alpha, \beta]$.

Definition 2.2 A path is the union of finitely many smooth curves.
Example 2.1 1. If $u, v \in \mathbf{C}$, the line segment from u to v is $\gamma(t)=$ $(1-t) u+t v$.
2. A circle of radius r traced counterclockwise around the point a in the complex plaine is

$$
\gamma(t)=a+r e^{i t}, \quad 0 \leq t \leq 2 \pi
$$

Definition 2.3 A complex-valued function $h:[\alpha, \beta] \rightarrow \mathbf{C}$ is piecewise continuous if there exist $t_{0}<t_{1}<\ldots<t_{n}$ with $\alpha=t_{0}$ and $\beta=t_{n}$ and continuous functions h_{k} on $\left[t_{k}, t_{k+1}\right]$ such that $h(t)=h_{k}(t)$ on $\left[t_{k}, t_{k+1}\right]$. The function h need not be defined at t_{k}.

Integral around a path α

1. Integration of a complex-valued function g on an interval $[\alpha, \beta]$, with $g(t)=u(t)+i v(t)$ where u and v are real-valued functions:

$$
\int_{a}^{b} g(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

2. Integration along a path γ in the complex plane:

$$
\int_{\gamma} g(z) d z=\int_{a}^{b} g(\gamma(t)) \gamma^{\prime}(t) d t
$$

where $\gamma^{\prime}(t)=\frac{d \gamma}{d t}$. This is the line integral from MATB42.

The join of the paths γ_{1} and γ_{2} is

$$
\gamma(t)=\gamma_{1}(t), t \in[0,1]
$$

while

$$
\gamma_{2}(t-1), t \in[1,2]
$$

(in other words, we concatenate the paths γ_{1} and γ_{2}, the new path is γ_{1} followed by γ_{2})

Example $2.2 \int_{0}^{2 \pi} e^{i t} d t=\int_{0}^{2 \pi} \cos (t) d t+i \int_{0}^{2 \pi} \sin (t) d t$.
Definition 2.4 Let γ be a path with parameter interval $[a, b]$. Then $\int_{\gamma} f(z) d z=$ $\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t$.

Example $2.3 \int_{\gamma}(z-a)^{n} d z$ where γ is a circle with radius r and centre a. Solution: $\gamma(t)=a+r e^{i t}$ so

$$
\begin{gathered}
\int_{\gamma}(z-a)^{n} d z=\int_{0}^{2 \pi}\left(r e^{i t}\right)^{n}\left(i r e^{i t}\right) d t \\
-i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1) t} d t=0
\end{gathered}
$$

if $n \neq-1$ while the value of the integral is $2 \pi i$ if $n=-1$.
Example $2.4 \int_{\gamma} z^{2} d z$ where the integral is around a semicircle of radius R and centre 0 in the upper half plane.

$$
\begin{aligned}
\int_{\gamma} z^{2} d z & =\int_{0}^{1}((2 t-1) R)^{2} 2 R d t+\int_{0}^{\pi} R^{2} e^{2 \pi i t}\left(i R e^{i t}\right) d t \\
& =\left.2 R^{3}\left(\frac{4}{3} t^{3}-2 t^{2}+t\right)\right|_{0} ^{1}+\left.\left(\frac{1}{3} R^{3} e^{3 i t}\right)\right|_{0} ^{\pi} \\
& =0
\end{aligned}
$$

Fundamental theorem of calculus: Let $\gamma:[\alpha, \beta] \rightarrow \mathbf{C}$ be a path. Then if $F^{\prime}(z)$ exists and is continuous on γ,

$$
\int_{\gamma} F^{\prime}(z) d z=F(\gamma(\beta))-F(\gamma(\alpha))
$$

In particular, if γ is a closed curve, then $\int_{\gamma} F^{\prime}(z) d z=0$.

Proof 2.1 Assume γ is smooth. Then $F \circ \gamma$ is differentiable on $[\alpha, \beta]$ with $(F \circ \gamma)^{\prime}(t)=F^{\prime}(\gamma(t)) \gamma^{\prime}(t)$. Then

$$
\begin{gathered}
\int_{\gamma} F^{\prime}(z) d z=\int_{\alpha}^{\beta} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
=\int_{\alpha}^{\beta}(F \circ \gamma)^{\prime}(t) d t \\
=\int_{\alpha}^{\beta} \operatorname{Re}(F \circ \gamma)^{\prime}(t) d t+i \int_{\alpha}^{\beta} \operatorname{Im}(F \circ \gamma)^{\prime}(t) d t \\
=\operatorname{Re}(F \circ \gamma)(t)+\left.i \operatorname{Im}(F \circ \gamma)(t)\right|_{\alpha} ^{\beta}=F(\gamma(\beta))-F(\gamma(\alpha))
\end{gathered}
$$

More generally choose $\alpha=t_{0}<t_{1}<\ldots<t_{n}=\beta$ so that γ is smooth on $\left[t_{i}, t_{i+1}\right]$.

Theorem 2.5 (Estimation Theorem) Let γ be a path with parameter interval $[\alpha, \beta]$. Let $f: \gamma \rightarrow \mathbf{C}$ be continuous. Then $\left|\int_{\gamma} f(z) d z\right| \leq \int_{\alpha}^{\beta} \mid$ $f(\gamma(t)) \gamma^{\prime}(t) \mid d t$.

Proof 2.2 For $g:[\alpha, \beta] \rightarrow \mathbf{R}$ integrable, we have

$$
\left|\int_{\alpha}^{\beta} g(t) d t\right| \leq \int_{\alpha}^{\beta}|g(t)| d t
$$

So

$$
e^{-i \phi}\left|\int_{\gamma} f(z) d z\right|=\left|\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t\right| e^{-i \phi}=\int_{\alpha}^{\beta} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

for some $\phi \in \mathbf{R}$. So $\left|\int_{\gamma} f(z) d z\right|=\int_{\alpha}^{\beta} \operatorname{Re}\left(e^{i \phi} f(\gamma(t)) \gamma^{\prime}(t)\right) d t$. Apply to

$$
g(t)=\operatorname{Re}\left(e^{i \phi} f(\gamma(t)) \gamma^{\prime}(t)\right)
$$

Hence

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\alpha}^{\beta} \operatorname{Re}\left(e^{i \phi} f(\gamma(t)) \gamma^{\prime}(t)\right) d t
$$

