2 Curves in the complex plane

Definition 2.1 A curve with parameter interval $[\alpha, \beta]$ is a continuous function $\gamma : [\alpha, \beta] \to \mathbb{C}$. It is called closed if $\gamma(\alpha) = \gamma(\beta)$ and simple if $\alpha \leq s < t \leq \beta$ implies $\gamma(s) \neq \gamma(t)$ for $t - s < \beta - \alpha$ (in other words the curve does not cross itself). It is called smooth if γ has continuous derivatives on $[\alpha, \beta]$.

Definition 2.2 A path is the union of finitely many smooth curves.

- **Example 2.1** 1. If $u, v \in \mathbf{C}$, the line segment from u to v is $\gamma(t) = (1-t)u + tv$.
 - 2. A circle of radius r traced counterclockwise around the point a in the complex plaine is

$$\gamma(t) = a + re^{it}, \quad 0 \le t \le 2\pi.$$

Definition 2.3 A complex-valued function $h : [\alpha, \beta] \to \mathbb{C}$ is piecewise continuous if there exist $t_0 < t_1 < \ldots < t_n$ with $\alpha = t_0$ and $\beta = t_n$ and continuous functions h_k on $[t_k, t_{k+1}]$ such that $h(t) = h_k(t)$ on $[t_k, t_{k+1}]$. The function h need not be defined at t_k .

Integral around a path α

1. Integration of a complex-valued function g on an interval $[\alpha, \beta]$, with g(t) = u(t) + iv(t) where u and v are real-valued functions:

$$\int_a^b g(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt.$$

2. Integration along a path γ in the complex plane:

$$\int_{\gamma} g(z)dz = \int_{a}^{b} g(\gamma(t))\gamma'(t)dt$$

where $\gamma'(t) = \frac{d\gamma}{dt}$. This is the line integral from MATB42.

The join of the paths γ_1 and γ_2 is

$$\gamma(t) = \gamma_1(t), t \in [0, 1]$$

while

$$\gamma_2(t-1), t \in [1,2]$$

(in other words, we concatenate the paths γ_1 and γ_2 , the new path is γ_1 followed by γ_2)

Example 2.2 $\int_0^{2\pi} e^{it} dt = \int_0^{2\pi} \cos(t) dt + i \int_0^{2\pi} \sin(t) dt.$

Definition 2.4 Let γ be a path with parameter interval [a, b]. Then $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$.

Example 2.3 $\int_{\gamma} (z-a)^n dz$ where γ is a circle with radius r and centre a. Solution: $\gamma(t) = a + re^{it}$ so

$$\int_{\gamma} (z-a)^n dz = \int_0^{2\pi} (re^{it})^n \left(ire^{it} \right) dt$$
$$-ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt = 0$$

if $n \neq -1$ while the value of the integral is $2\pi i$ if n = -1.

Example 2.4 $\int_{\gamma} z^2 dz$ where the integral is around a semicircle of radius R and centre 0 in the upper half plane.

$$\int_{\gamma} z^2 dz = \int_0^1 \left((2t - 1)R \right)^2 2R dt + \int_0^{\pi} R^2 e^{2\pi i t} (iRe^{it}) dt$$
$$= 2R^3 \left(\frac{4}{3}t^3 - 2t^2 + t \right) \mid_0^1 + \left(\frac{1}{3}R^3 e^{3it} \right) \mid_0^{\pi}$$
$$= 0$$

Fundamental theorem of calculus: Let $\gamma : [\alpha, \beta] \to \mathbf{C}$ be a path. Then if F'(z) exists and is continuous on γ ,

$$\int_{\gamma} F'(z) dz = F(\gamma(\beta)) - F(\gamma(\alpha)).$$

In particular, if γ is a closed curve, then $\int_{\gamma} F'(z) dz = 0$.

Proof 2.1 Assume γ is smooth. Then $F \circ \gamma$ is differentiable on $[\alpha, \beta]$ with $(F \circ \gamma)'(t) = F'(\gamma(t))\gamma'(t)$. Then

$$\begin{split} \int_{\gamma} F'(z) dz &= \int_{\alpha}^{\beta} F'(\gamma(t)) \gamma'(t) dt \\ &= \int_{\alpha}^{\beta} (F \circ \gamma)'(t) dt \\ &= \int_{\alpha}^{\beta} \operatorname{Re}(F \circ \gamma)'(t) dt + i \int_{\alpha}^{\beta} \operatorname{Im}(F \circ \gamma)'(t) dt \\ &= \operatorname{Re}(F \circ \gamma)(t) + i \operatorname{Im}(F \circ \gamma)(t) \mid_{\alpha}^{\beta} = F(\gamma(\beta)) - F(\gamma(\alpha)). \end{split}$$

More generally choose $\alpha = t_0 < t_1 < \ldots < t_n = \beta$ so that γ is smooth on $[t_i, t_{i+1}]$.

Theorem 2.5 (Estimation Theorem) Let γ be a path with parameter interval $[\alpha, \beta]$. Let $f : \gamma \to \mathbf{C}$ be continuous. Then $|\int_{\gamma} f(z)dz| \leq \int_{\alpha}^{\beta} |f(\gamma(t))\gamma'(t)| dt$.

Proof 2.2 For $g : [\alpha, \beta] \to \mathbf{R}$ integrable, we have

$$\left|\int_{\alpha}^{\beta} g(t)dt\right| \leq \int_{\alpha}^{\beta} \left|g(t)\right| dt.$$

So

$$e^{-i\phi} \mid \int_{\gamma} f(z)dz \mid = \mid \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt \mid e^{-i\phi} = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt$$

for some $\phi \in \mathbf{R}$. So $| \int_{\gamma} f(z) dz | = \int_{\alpha}^{\beta} \operatorname{Re} \left(e^{i\phi} f(\gamma(t)) \gamma'(t) \right) dt$. Apply to

$$g(t) = \operatorname{Re}(e^{i\phi}f(\gamma(t))\gamma'(t)).$$

Hence

$$|\int_{\gamma} f(z)dz| \leq \int_{\alpha}^{\beta} \operatorname{Re}\left(e^{i\phi}f(\gamma(t))\gamma'(t)\right)dt.$$