MATC34 Chapter I: Complex-valued Functions

Definition 1.1 A complex-valued function is a mapping which assigns to each $z \in \mathbb{C}$ a unique complex number $f(z) \in \mathbb{C}$.

Definition 1.2 A complex-valued function f is differentiable if

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists. This limit, if it exists, is denoted f'(z).

Definition 1.3 Let G be an open set in C. If f is differentiable at every $z \in C$, then f is said to be holomorphic or analytic in G. The set of complexvalued functions holomorphic on G is denoted H(G).

Cauchy-Riemann equations

Theorem 1.4 (Cauchy-Riemann): Suppose f = u + iv is a complex-valued function (where u and v are real-valued functions). If f is differentiable at z then

$$u_x = v_y, u_y = -v_x.$$

Proof 1.1

$$f'(z) = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} + i \frac{v(x+h,y) - v(x,y)}{h}$$
$$= u_x + iv_x.$$

But also

$$f'(z) = \lim_{h \to 0} \frac{u(x, y+k) - u(x, y)}{h} + i \frac{v(x, y+k) - v(x, y)}{h}$$

where h = ik and $k \in \mathbf{R}$. This limit is $-iu_y + v_y$. Equating the real and imaginary parts we find

$$u_x = v_y, u_y = -v_x.$$

Example 1.1 If f is defined by f(z) = |z|, then f is not differentiable anywhere.

Proof 1.2 $u(x,y) = \sqrt{x^2 + y^2}, v(x,y) = 0$ so $u_x = \frac{x}{\sqrt{x^2 + y^2}}$ and $u_y = \frac{y}{\sqrt{x^2 + y^2}}$ but $v_x = v_y = 0$.

For z = 0, $\frac{f(h)-f(0)}{h} = \frac{|h|}{h}$. This limit is 1 if we take the limit as $h \to 0$ for $h \in \mathbf{R}^+$, but it is -1 if we take the limit as $h \to 0$ for for $h \in \mathbf{R}^-$. Hence the limit does not exists.

Remark 1.1 The fact that a function satisfies the Cauchy-Riemann equations does not guarantee that it is differentiable. For example $f(z) = z^5/|z|^4$ satisfies the Cauchy-Riemann equations at z = 0 but it is not differentiable there.

Properties of holomorphic functions

- 1. If f and g are holomorphic in a set $S \subset \mathbf{C}$, and $\lambda \in \mathbf{C}$ then $\lambda f, f + g$ and fg are holomorphic in S.
- 2. Chain rule: If f is holomorphic in S and g is holomorphic in f(S), then $g \circ f$ is holomorphic in S and $(g \circ f)'(z) = g'(f(z))f'(z)$.
- 3. If $f(z) \neq 0$ for all $z \in S$, then $\frac{1}{f}$ is holomorphic in S and

$$\left(\frac{1}{f}\right)'(z) = -\frac{f'(z)}{(f(z))^2}.$$

Definition 1.5 A series of complex numbers

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots$$

converges to a number T if the sequence of partial sums

$$S_N = \sum_{n=1}^N z_n$$

converges to T. We then write

$$\sum_{n=1}^{\infty} z_n = T.$$

Remark 1.2 Let $\{a_n\}$ be a sequence of complex numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges ('absolute convergence implies convergence').

Remark 1.3 The number $\sum_{n=1}^{\infty} |a_n|$ is a series with real nonnegative terms, to which tests for convergence (Ratio Test, Root Test, etc.) apply.

Comparison test: If $|c_j| \leq M_j$ for all j, and $\sum_{j=0}^{\infty} M_j$ converges, then so does $\sum_{j=0}^{\infty} c_j$.

Ratio test: Suppose $\frac{|c_{j+1}|}{|c_j|} \to L$ as $j \to \infty$. Then the series $\sum_{j=1}^{\infty} c_j$ converges if L < 1 and diverges if L > 1.

Power series

Given a series $\sum_{n=0}^{\infty} c_n z^n$ for $c_n \in \mathbf{C}$, its radius of convergence is $R := \sup\{|z|: \sum_{n=0}^{\infty} |c_n z^n| \text{ converges }\}$. In this definition, it is possible that $R = \infty$.

Examples of holomorphic functions:

- 1. $f(z) = z; \frac{df}{dz} = 1$
- 2. any polynomial in z
- 3. any rational function $f(z) = \frac{p(z)}{q(z)}$ on the set where $q(z) \neq 0$, where p and q are polynomials
- 4. convergent power series in z

Theorem 1.6 If $\sum_{n=0}^{\infty} c_n z^n$ has radius of convergence R, then we can use it to define a function $f(z) = \sum_{n=0}^{\infty} c_n z^n$ for |z| < R. Then f is holomorphic at any z for which |z| < R, and its derivative is obtained by differentiating the series term by term:

$$f'(z) = \sum_{n=0}^{\infty} nc_n z^{n-1}$$

for |z| < R. These power series have the same radius of convergence.

Theorem 1.7 If $f(z) = \sum_{n=0}^{\infty} c_n z^n$ is a power series having nonzero radius of convergence, then f has derivatives of all orders at 0 and for $n = 0, 1, 2, \ldots, f^{(n)}(z) = n!c_n$.

Elementary functions

Examples of functions defined by power series.

1. Exponential function $f(z) = e^z$ defined by $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ Properties:

- (a) $\frac{d}{dz}e^z = e^z$
- (b) e^z is holomorphic on the whole complex plane **C**
- (c) $e^z > 0$ if z is a real number
- (d) $e^z \neq 0$ for any $z \in \mathbf{C}$
- (e) If $z \in \mathbf{C}$ then $|e^z| = e^{\operatorname{Re}(z)}$ and if $t \in \mathbf{R}$ then $|e^{it}| = 1$.
- 2. Binomial expansion

$$f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots$$

This series has radius of convergence 1 (in other words this definition of f(z) is valid for |z| < 1, not for |z| > 1).

3. Trigonometric functions

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
$$\cosh(z) = \cos(iz)$$
$$\sinh(z) = -i\sin(iz)$$

Euler's formula:

$$e^{iz} = \cos(z) + i\sin(z)$$

$$2\cos(z) = e^{iz} + e^{-iz}$$

$$2i\sin(z) = e^{iz} - e^{-iz}$$

 $\cos(z + \alpha) = \cos(z)$ for all z if and only if $\alpha = 2k\pi$ for $k \in \mathbb{Z}$ $\sin(z + \alpha) = \sin(z)$ for all z if and only if $\alpha = 2k\pi$ for $k \in \mathbb{Z}$ $e^{z+\alpha} = e^z$ for all z if and only if $\alpha = 2\pi i k$ for $k \in \mathbb{Z}$ From these equations, $\cos(z) = 0$ iff $z = (k + \frac{1}{2})\pi$. $\sin(z) = 0$ iff $z = k\pi$ $e^z = 1$ iff $z = 2\pi i k$ $e^z = -1$ iff $z = \pi i (2k + 1)$