MATC34 Chapter I: Complex-valued Functions

Definition 1.1 A complex-valued function ia a mapping which assigns to each $z \in \mathbf{C}$ a unique complex number $f(z) \in \mathbf{C}$.

Definition 1.2 A complex-valued function f is differentiable if

$$
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
$$

exists. This limit, if it exists, is denoted $f^{\prime}(z)$.
Definition 1.3 Let G be an open set in \mathbf{C}. If f is differentiable at every $z \in \mathbf{C}$, then f is said to be holomorphic or analytic in G. The set of complexvalued functions holomorphic on G is denoted $H(G)$.

Cauchy-Riemann equations

Theorem 1.4 (Cauchy-Riemann): Suppose $f=u+i v$ is a complex-valued function (where u and v are real-valued functions). If f is differentiable at z then

$$
u_{x}=v_{y}, u_{y}=-v_{x} .
$$

Proof 1.1

$$
\begin{gathered}
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{u(x+h, y)-u(x, y)}{h}+i \frac{v(x+h, y)-v(x, y)}{h} \\
=u_{x}+i v_{x} .
\end{gathered}
$$

But also

$$
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{u(x, y+k)-u(x, y)}{h}+i \frac{v(x, y+k)-v(x, y)}{h}
$$

where $h=i k$ and $k \in \mathbf{R}$. This limit is $-i u_{y}+v_{y}$. Equating the real and imaginary parts we find

$$
u_{x}=v_{y}, u_{y}=-v_{x} .
$$

Example 1.1 If f is defined by $f(z)=|z|$, then f is not differentiable anywhere.

Proof $1.2 u(x, y)=\sqrt{x^{2}+y^{2}}, v(x, y)=0$ so $u_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}$ and $u_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}}$ but $v_{x}=v_{y}=0$.

For $z=0, \frac{f(h)-f(0)}{h}=\frac{|h|}{h}$. This limit is 1 if we take the limit as $h \rightarrow 0$ for $h \in \mathbf{R}^{+}$, but it is -1 if we take the limit as $h \rightarrow 0$ for for $h \in \mathbf{R}^{-}$. Hence the limit does not exists.

Remark 1.1 The fact that a function satisfies the Cauchy-Riemann equations does not guarantee that it is differentiable. For example $f(z)=z^{5} /|z|^{4}$ satisfies the Cauchy-Riemann equations at $z=0$ but it is not differentiable there.

Properties of holomorphic functions

1. If f and g are holomorphic in a set $S \subset \mathbf{C}$, and $\lambda \in \mathbf{C}$ then $\lambda f, f+g$ and $f g$ are holomorphic in S.
2. Chain rule: If f is holomorphic in S and g is holomorphic in $f(S)$, then $g \circ f$ is holomorphic in S and $(g \circ f)^{\prime}(z)=g^{\prime}(f(z)) f^{\prime}(z)$.
3. If $f(z) \neq 0$ for all $z \in S$, then $\frac{1}{f}$ is holomorphic in S and

$$
\left(\frac{1}{f}\right)^{\prime}(z)=-\frac{f^{\prime}(z)}{(f(z))^{2}}
$$

Definition 1.5 A series of complex numbers

$$
\sum_{n=1}^{\infty} z_{n}=z_{1}+z_{2}+\ldots
$$

converges to a number T if the sequence of partial sums

$$
S_{N}=\sum_{n=1}^{N} z_{n}
$$

converges to T. We then write

$$
\sum_{n=1}^{\infty} z_{n}=T
$$

Remark 1.2 Let $\left\{a_{n}\right\}$ be a sequence of complex numbers. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges ('absolute convergence implies convergence').

Remark 1.3 The number $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is a series with real nonnegative terms, to which tests for convergence (Ratio Test, Root Test, etc.) apply.

Comparison test: If $\left|c_{j}\right| \leq M_{j}$ for all j, and $\sum_{j=0}^{\infty} M_{j}$ converges, then so does $\sum_{j=0}^{\infty} c_{j}$.

Ratio test: Suppose $\frac{\left|c_{j+1}\right|}{\left|c_{j}\right|} \rightarrow L$ as $j \rightarrow \infty$. Then the series $\sum_{j=1}^{\infty} c_{j}$ converges if $L<1$ and diverges if $L>1$.

Power series

Given a series $\sum_{n=0}^{\infty} c_{n} z^{n}$ for $c_{n} \in \mathbf{C}$, its radius of convergence is $R:=$ $\sup \left\{|z|: \sum_{n=0}^{\infty}\left|c_{n} z^{n}\right|\right.$ converges $\}$. In this definition, it is possible that $R=\infty$.

Examples of holomorphic functions:

1. $f(z)=z ; \frac{d f}{d z}=1$
2. any polynomial in z
3. any rational function $f(z)=\frac{p(z)}{q(z)}$ on the set where $q(z) \neq 0$, where p and q are polynomials
4. convergent power series in z

Theorem 1.6 If $\sum_{n=0}^{\infty} c_{n} z^{n}$ has radius of convergence R, then we can use it to define a function $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ for $|z|<R$. Then f is holomorphic at any z for which $|z|<R$, and its derivative is obtained by differentiating the series term by term:

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} n c_{n} z^{n-1}
$$

for $|z|<R$. These power series have the same radius of convergence.
Theorem 1.7 If $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ is a power series having nonzero radius of convergence, then f has derivatives of all orders at 0 and for $n=$ $0,1,2, \ldots, f^{(n)}(z)=n!c_{n}$.

Elementary functions
Examples of functions defined by power series.

1. Exponential function $f(z)=e^{z}$ defined by $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ Properties:
(a) $\frac{d}{d z} z^{z}=e^{z}$
(b) e^{z} is holomorphic on the whole complex plane \mathbf{C}
(c) $e^{z}>0$ if z is a real number
(d) $e^{z} \neq 0$ for any $z \in \mathbf{C}$
(e) If $z \in \mathbf{C}$ then $\left|e^{z}\right|=e^{\operatorname{Re}(z)}$ and if $t \in \mathbf{R}$ then $\left|e^{i t}\right|=1$.
2. Binomial expansion

$$
f(z)=\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+\ldots
$$

This series has radius of convergence 1 (in other words this definition of $f(z)$ is valid for $|z|<1$, not for $|z|>1$).
3. Trigonometric functions

$$
\begin{gathered}
\cos (z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
\sin (z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cosh (z)=\cos (i z) \\
\sinh (z)=-i \sin (i z)
\end{gathered}
$$

Euler's formula:

$$
\begin{gathered}
e^{i z}=\cos (z)+i \sin (z) \\
2 \cos (z)=e^{i z}+e^{-i z} \\
2 i \sin (z)=e^{i z}-e^{-i z}
\end{gathered}
$$

$\cos (z+\alpha)=\cos (z)$ for all z if and only if $\alpha=2 k \pi$ for $k \in \mathbf{Z}$
$\sin (z+\alpha)=\sin (z)$ for all z if and only if $\alpha=2 k \pi$ for $k \in \mathbf{Z}$
$e^{z+\alpha}=e^{z}$ for all z if and only if $\alpha=2 \pi i k$ for $k \in \mathbf{Z}$
From these equations, $\cos (z)=0$ iff $z=\left(k+\frac{1}{2}\right) \pi$.

$$
\begin{aligned}
& \sin (z)=0 \text { iff } z=k \pi \\
& e^{z}=1 \text { iff } z=2 \pi i k \\
& e^{z}=-1 \text { iff } z=\pi i(2 k+1)
\end{aligned}
$$

