
MATC34 Chapter I: Complex-valued Functions

Definition 1.1 A complex-valued function ia a mapping which assigns to
each z ∈ C a unique complex number f(z) ∈ C.

Definition 1.2 A complex-valued function f is differentiable if

lim
h→0

f(z + h)− f(z)

h

exists. This limit, if it exists, is denoted f ′(z).

Definition 1.3 Let G be an open set in C. If f is differentiable at every
z ∈ C, then f is said to be holomorphic or analytic in G. The set of complex-
valued functions holomorphic on G is denoted H(G).

Cauchy-Riemann equations

Theorem 1.4 (Cauchy-Riemann): Suppose f = u+ iv is a complex-valued
function (where u and v are real-valued functions). If f is differentiable at z
then

ux = vy, uy = −vx.

Proof 1.1

f ′(z) = lim
h→0

u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

= ux + ivx.

But also

f ′(z) = lim
h→0

u(x, y + k)− u(x, y)

h
+ i

v(x, y + k)− v(x, y)

h

where h = ik and k ∈ R. This limit is −iuy + vy. Equating the real and
imaginary parts we find

ux = vy, uy = −vx.

Example 1.1 If f is defined by f(z) = |z|, then f is not differentiable
anywhere.

1



Proof 1.2 u(x, y) =
√
x2 + y2, v(x, y) = 0 so ux = x√

x2+y2
and uy =

y√
x2+y2

but vx = vy = 0.

For z = 0, f(h)−f(0)
h

= |h|
h
. This limit is 1 if we take the limit as h → 0 for

h ∈ R+, but it is −1 if we take the limit as h → 0 for for h ∈ R−. Hence
the limit does not exists.

Remark 1.1 The fact that a function satisfies the Cauchy-Riemann equa-
tions does not guarantee that it is differentiable. For example f(z) = z5/|z|4
satisfies the Cauchy-Riemann equations at z = 0 but it is not differentiable
there.

Properties of holomorphic functions

1. If f and g are holomorphic in a set S ⊂ C, and λ ∈ C then λf , f + g
and fg are holomorphic in S.

2. Chain rule: If f is holomorphic in S and g is holomorphic in f(S), then
g ◦ f is holomorphic in S and (g ◦ f)′(z) = g′(f(z))f ′(z).

3. If f(z) 6= 0 for all z ∈ S, then 1
f
is holomorphic in S and

(1

f

)′

(z) = − f ′(z)

(f(z))2
.

Definition 1.5 A series of complex numbers

∞
∑

n=1

zn = z1 + z2 + . . .

converges to a number T if the sequence of partial sums

SN =
N
∑

n=1

zn

converges to T . We then write

∞
∑

n=1

zn = T.

Remark 1.2 Let {an} be a sequence of complex numbers. If
∑∞

n=1 |an| con-
verges, then

∑∞
n=1 an converges (‘absolute convergence implies convergence’).
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Remark 1.3 The number
∑∞

n=1 |an| is a series with real nonnegative terms,
to which tests for convergence (Ratio Test, Root Test, etc.) apply.

Comparison test: If |cj| ≤ Mj for all j, and
∑∞

j=0Mj converges, then
so does

∑∞
j=0 cj .

Ratio test: Suppose |cj+1|

|cj|
→ L as j → ∞. Then the series

∑∞
j=1 cj

converges if L < 1 and diverges if L > 1.

Power series

Given a series
∑∞

n=0 cnz
n for cn ∈ C, its radius of convergence is R :=

sup{|z| : ∑∞
n=0 |cnzn| converges }. In this definition, it is possible that R = ∞.

Examples of holomorphic functions:

1. f(z) = z; df

dz
= 1

2. any polynomial in z

3. any rational function f(z) = p(z)
q(z)

on the set where q(z) 6= 0, where p
and q are polynomials

4. convergent power series in z

Theorem 1.6 If
∑∞

n=0 cnz
n has radius of convergence R, then we can use it

to define a function f(z) =
∑∞

n=0 cnz
n for |z| < R. Then f is holomorphic

at any z for which |z| < R, and its derivative is obtained by differentiating
the series term by term:

f ′(z) =
∞
∑

n=0

ncnz
n−1

for |z| < R. These power series have the same radius of convergence.

Theorem 1.7 If f(z) =
∑∞

n=0 cnz
n is a power series having nonzero ra-

dius of convergence, then f has derivatives of all orders at 0 and for n =
0, 1, 2, . . . , f (n)(z) = n!cn.

Elementary functions
Examples of functions defined by power series.

1. Exponential function f(z) = ez defined by ez =
∑∞

n=0
zn

n!

Properties:
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(a) d
dz
ez = ez

(b) ez is holomorphic on the whole complex plane C

(c) ez > 0 if z is a real number

(d) ez 6= 0 for any z ∈ C

(e) If z ∈ C then |ez| = eRe(z) and if t ∈ R then |eit| = 1.

2. Binomial expansion

f(z) =
1

1− z
=

∞
∑

n=0

zn = 1 + z + z2 + . . .

This series has radius of convergence 1 (in other words this definition
of f(z) is valid for |z| < 1, not for |z| > 1).

3. Trigonometric functions

cos(z) =
∞
∑

n=0

(−1)n
z2n

(2n)!

sin(z) =
∞
∑

n=0

(−1)n
z2n+1

(2n+ 1)!

cosh(z) = cos(iz)

sinh(z) = −i sin(iz)

Euler’s formula:
eiz = cos(z) + i sin(z)

2 cos(z) = eiz + e−iz

2i sin(z) = eiz − e−iz

cos(z + α) = cos(z) for all z if and only if α = 2kπ for k ∈ Z

sin(z + α) = sin(z) for all z if and only if α = 2kπ for k ∈ Z

ez+α = ez for all z if and only if α = 2πik for k ∈ Z

From these equations, cos(z) = 0 iff z = (k + 1
2
)π.

sin(z) = 0 iff z = kπ

ez = 1 iff z = 2πik

ez = −1 iff z = πi(2k + 1)
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