University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

2018/9

Complex Variables

Instructor:	Prof. L. Jeffrey	Office: IC-474
		<i>Telephone:</i> (416)287-7265
	<i>Email:</i> jeffrey@utsc.utoronto.ca	

Review of Complex Numbers

1.1 Basics

A complex number z = x + iy corresponds to the point in the plane designated by the ordered set (x, y) of real numbers.

The number x is called the *real part* of z, denoted $\operatorname{Re}(z)$.

Likewise, the number y is called the *imaginary part* of z, denoted Im(z).

1.2 Multiplication

Multiplication of complex numbers is defined by specifying that $i^2 = -1$, and that real numbers multiply in the usual way.

1.3 Polar form of complex numbers

We may write a complex number as

$$z = re^{i\theta}$$

where $x = r \cos \theta$ and $y = r \sin \theta$. Euler's formula specifies that $e^{i\theta} = \cos \theta + i \sin \theta$. The number θ is called the *argument* of z and the collection of possible arguments is denoted $[\arg(z)]$. When z is specified, its argument is not uniquely determined: if θ is one possible value of the argument of z, so are $\theta + 2\pi n$ for all $n = 0, \pm 1, \pm 2, \ldots$ One may choose a unique value for the argument by insisting that the argument θ take its value satisfying

$$-\pi < \theta \leq \pi;$$

the value of the argument satisfying this constraint is called the *principal* value of the argument and is denoted Arg(z).

Fact: $[\arg(z_1z_2)] = \{\theta_1 + \theta_2 \mid \theta_1 \in [\arg(z_1)], \theta_2 \in [\arg(z_2)]\}.$

Suppose $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$. In order that $z_1 = z_2$, we need that $r_1 = r_2$ and $\theta_1 = \theta_2 + 2\pi n$ for some $n = 0, \pm 1, \pm 2, \ldots$

1.4 Modulus

The modulus of z is $|z| = \sqrt{x^2 + y^2}$. Geometrically the number |z| is the distance between the point (x, y) and the origin, or the length of the vector representing z. Note that while the inequality $z_1 < z_2$ is meaningless unless both z_1 and z_2 are real, the statement $|z_1| < |z_2|$ means that the point z_1 is closer to the origin than the point z_2 is.

Triangle inequality:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

1.5 Complex conjugate

The complex conjugate of a complex number

$$z = x + iy$$

is

$$\bar{z} = x - iy.$$

We have $|z|^2 = z\bar{z}$.

1.6 Elementary properties

If z and w are complex numbers, we have: 1. $\overline{z} = z$ 2. $2\operatorname{Re}(z) = z + \overline{z}$; $2\operatorname{Im}(z) = z - \overline{z}$ 3. $|\overline{z}| = |z|$ 4. $\overline{z + w} = \overline{z} + \overline{w}$; $\overline{zw} = \overline{z}\overline{w}$.

5. Note that |zw| = |z||w|, but that in general $|z+w| \neq |z| + |w|$.

1.7 Inverse

The multiplicative inverse of a complex number is $z^{-1} = \bar{z}/|z|^2$.

If $z = re^{i\theta}$, then $z^{-1} = r^{-1}e^{-i\theta}$. (Geometrically, the modulus of z^{-1} is the reciprocal of the modulus of z, and the ray through z^{-1} is the reflection in the real axis of the ray through z.)

1.8. Powers and roots of complex numbers

These are best handled by expressing the complex number in polar coordinates: $z = re^{i\theta}$

For $m = 1, 2, \ldots$ we then have

$$z^m = r^m e^{im\theta}$$

and

$$z^{1/m} = r^{1/m} e^{i(\theta + 2\pi n)/m}$$

for all $n = 0, \pm 1, \pm 2, \ldots$ All possible values are obtained by taking $n = 0, 1, \ldots, m-1$; there are *m* possible roots. **Example:** Find the cube roots of z = -2. **Solution:** $-2 = 2e^{i\pi}$ so $(-2)^{1/3} = 2^{1/3}e^{i(\pi+2\pi n)/3}$ $= 2^{1/3}\omega$ where $\omega = e^{i\pi/3}, e^{i\pi}, e^{5i\pi/3}$. **1.9 Multiplication in polar coordinates** $z_1 = r_1e^{i\theta_1}, z_2 = r_2e^{i\theta_2} \Rightarrow z_1z_2 = r_1r_2e^{i(\theta_1+\theta_2)}$ **Example.** $z_1 = 1 + i, z_2 = -1 + i$

Example. $z_1 = 1 + i, z_2 = -1 + i$ $z_1 = \sqrt{2}e^{i\pi/4}, \quad z_2 = \sqrt{2}e^{3i\pi/4}$ $\Rightarrow z_1 z_2 = 2e^{i\pi} = -2.$