University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

Complex Variables

Instructor: Prof. L. Jeffrey Office: IC-474
Telephone: (416)287-7265
Email: jeffrey@utsc.utoronto.ca

Review of Complex Numbers

1.1 Basics

A complex number $z=x+i y$ corresponds to the point in the plane designated by the ordered set (x, y) of real numbers.

The number x is called the real part of z, denoted $\operatorname{Re}(z)$.
Likewise, the number y is called the imaginary part of z, denoted $\operatorname{Im}(z)$.

1.2 Multiplication

Multiplication of complex numbers is defined by specifying that $i^{2}=-1$, and that real numbers multiply in the usual way.

1.3 Polar form of complex numbers

We may write a complex number as

$$
z=r e^{i \theta}
$$

where $x=r \cos \theta$ and $y=r \sin \theta$. Euler's formula specifies that $e^{i \theta}=$ $\cos \theta+i \sin \theta$. The number θ is called the argument of z and the collection of possible arguments is denoted $[\arg (z)]$. When z is specified, its argument is not uniquely determined: if θ is one possible value of the argument of z, so are $\theta+2 \pi n$ for all $n=0, \pm 1, \pm 2, \ldots$. One may choose a unique value for the argument by insisting that the argument θ take its value satisfying

$$
-\pi<\theta \leq \pi
$$

the value of the argument satisfying this constraint is called the principal value of the argument and is denoted $\operatorname{Arg}(z)$.
Fact: $\left[\arg \left(z_{1} z_{2}\right)\right]=\left\{\theta_{1}+\theta_{2} \mid \theta_{1} \in\left[\arg \left(z_{1}\right)\right], \theta_{2} \in\left[\arg \left(z_{2}\right)\right]\right\}$.
Suppose $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$. In order that $z_{1}=z_{2}$, we need that $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}+2 \pi n$ for some $n=0, \pm 1, \pm 2, \ldots$

1.4 Modulus

The modulus of z is $|z|=\sqrt{x^{2}+y^{2}}$. Geometrically the number $|z|$ is the distance between the point (x, y) and the origin, or the length of the vector representing z. Note that while the inequality $z_{1}<z_{2}$ is meaningless unless both z_{1} and z_{2} are real, the statement $\left|z_{1}\right|<\left|z_{2}\right|$ means that the point z_{1} is closer to the origin than the point z_{2} is.
Triangle inequality:

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

1.5 Complex conjugate

The complex conjugate of a complex number

$$
z=x+i y
$$

is

$$
\bar{z}=x-i y .
$$

We have $|z|^{2}=z \bar{z}$.

1.6 Elementary properties

If z and w are complex numbers, we have:

1. $\overline{\bar{z}}=z$
2. $2 \operatorname{Re}(z)=z+\bar{z} ; 2 \operatorname{Im}(z)=z-\bar{z}$
3. $|\bar{z}|=|z|$
4. $\overline{z+w}=\bar{z}+\bar{w} ; \quad \overline{z w}=\bar{z} \bar{w}$.
5. Note that $|z w|=|z||w|$, but that in general $|z+w| \neq|z|+|w|$.

1.7 Inverse

The multiplicative inverse of a complex number is $z^{-1}=\bar{z} /|z|^{2}$.
If $z=r e^{i \theta}$, then $z^{-1}=r^{-1} e^{-i \theta}$. (Geometrically, the modulus of z^{-1} is the reciprocal of the modulus of z, and the ray through z^{-1} is the reflection in the real axis of the ray through z.)

1.8. Powers and roots of complex numbers

These are best handled by expressing the complex number in polar coordinates: $z=r e^{i \theta}$

For $m=1,2, \ldots$ we then have

$$
z^{m}=r^{m} e^{i m \theta}
$$

and

$$
z^{1 / m}=r^{1 / m} e^{i(\theta+2 \pi n) / m}
$$

for all $n=0, \pm 1, \pm 2, \ldots$. All possible values are obtained by taking $n=$ $0,1, \ldots, m-1$; there are m possible roots.
Example: Find the cube roots of $z=-2$.
Solution: $-2=2 e^{i \pi}$ so $(-2)^{1 / 3}=2^{1 / 3} e^{i(\pi+2 \pi n) / 3}$

$$
=2^{1 / 3} \omega \text { where } \omega=e^{i \pi / 3}, e^{i \pi}, e^{5 i \pi / 3}
$$

1.9 Multiplication in polar coordinates

$$
z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}} \Rightarrow z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Example. $z_{1}=1+i, z_{2}=-1+i$
$z_{1}=\sqrt{2} e^{i \pi / 4}, \quad z_{2}=\sqrt{2} e^{3 i \pi / 4}$
$\Rightarrow z_{1} z_{2}=2 e^{i \pi}=-2$

