University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F 2018/19

$\frac{\rm Final}{\rm Thursday,\ December\ 20,\ 2018,\ 7:00\ pm\ -10:00\ pm}$

FAMILY NAME:
GIVEN NAMES:
STUDENT NUMBER:
SIGNATURE:

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

FOR MARKERS ONLY	
Question	Marks
1	/ 10
2	/ 15
3	/ 15
4	/ 15
5	/ 15
6	/ 15
7	/ 15
TOTAL	/100

No books or calculators may be used

You may use any theorems stated in class, as long as you state them clearly and correctly.

(1) (10 pts) (a) State the Cauchy-Riemann equations. Solution:

$$u_x = v_x, v_x = -u_y$$

(b) Let f(x,y) be a complex-valued function on the complex plane. Show that if $\partial f/\partial y=0$ for all x and y then f is constant. Solution:

 $f_y=0$ so f=u(x,y) + iv(x,y) then $u_y=v_y=0$. By C-R, also $v_x=u_x=0$ This implies f=const because $\partial f/\partial x=\partial f/\partial y=0$.

(2) (15 pts) Use the Cauchy integral formula to compute

$$\int_{|z|=2} \frac{dz}{(z-1)(z-i)^2}$$

 $\int_{|z|=2} \frac{dz}{(z-1)(z-i)^2}.$ The line integral is around a circle of radius 2 and center 0 in the complex plane. Solution:

By the Cauchy integral formula, this is

$$1/(1-i)^2$$

(3) (15 pts)

(a) (8 points) Find the Laurent series of $\frac{1}{(z+1)^2}$ around 0. What it its radius of convergence? Solution:

$$1/(z+1)^2 = -d/dz(1/(1+z))$$

$$1/(1+z) = 1 - z + z^2 - z^3 + \dots$$

$$1/(1+z)^2 = 1 - 2z + 3z^2 - \dots$$

Radius of convergence 1.

(b) (7 pts) Find the Laurent series of $\frac{1}{z+1}$ around 11. What is its radius of convergence?

Solution:

$$1/(z+1) = 1/(z-1+2) = (1/2))1/(1+2/(z-1)) = (1/2)(1-2/(z-1)+(2/(z-1)^2)-\dots$$

The radius of convergence is 1.

(4) (15 pts)

Compute the integral

$$\int_{\gamma} z^n (1-z)^m dz$$

where m is a nonnegative integer and n is an integer. The curve γ is a circle of radius 2 and center 0 in the complex plane.

Solution:

$$(1-z)^m = \sum_{k=0}^m (mchoosek)(-z)^k$$
$$\int_{\gamma} z^n (1-z)^m dz = \sum_{k=0}^m (mchoosek)(-1)^k z^{k+n} dz$$

This is only nonzero if k+n=-1, in which case the integral is $2\pi i$. So the answer is

$$2\pi i (mchoosen - 1).$$

(5) (15 pts) (a) Use the Cauchy residue theorem to compute the integral

$$\int_{\gamma} \frac{1}{(z-1)^2(z^2+1)} dz$$

Here γ is a circle of radius 2 and center 0 in the complex plane.

Solution: This integral is

$$\int_{\gamma} f(z)dz = 2\pi \sum_{b} \operatorname{Res}_{(z)} z = b)(f)$$

The function f has poles at 1, i and -i. i and -i are simple poles so the residue of f at i is $1/((i-1)^2(2i))$ while the residue of f at -i is $1/(-i-1)^2(-2i)$. The residue at 1 is h'(1) where $h(z) = z^2 + 1$ so h'(1) = 2.

Hence the residue of f at 1 is 2.

So the integral is $(2 + 1/((i-1)^2(2i)) + 1/((i-1)^2(-2i))$

The second term is 1. The third term is its complex conjugate, so also 1.

(6) (15 pts)

(a) Find the singularities of $\frac{\cos(z)}{\sin(z)}$. State the type of singularity (removable singularity, pole, essential singularity). If a pole, compute the order of the pole.

Solution: This function is singular when $\sin(z) = 0$, in other words when $z = n\pi$. Because $\cos(z)$ is nonozero at those values and $\sin(z)$ has a zero of order 1 ($\sin(z) = (z - n\pi) + ...$), or the first derivative of $\sin(z)$ at these zeroes is nonzero), we find that

(b) Compute the residue of $\frac{\cos(z)}{\sin(z)}$ at z = 0.

Solution: Because the leading order term of $\sin(z)$ at z = 0 is z, and $\cos(0) = 1$, we find that the residue of this function at z = 0 is 1.

(7) (15 points)

Use residues to compute the integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}.$$

Solution: Complete the contour to a semicircle with radius R. Then

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)} + \int_{\Gamma_R} f(z)dz = 2\pi i \operatorname{Res}_{z=i} f(z) + \operatorname{Res}_{z=3i} f(z).$$

The residues are

$$Res_{z=i}f(z) = 1/(2i))(8)$$

 $Res_{z=3i}f(z) = 1/6i(-7)$

The contour integral is

$$\frac{z=Re^{i\theta}}{Re^{i\theta}id\theta}$$

$$\frac{(R^2e^{2i\theta}+1)(R^2e^{2i\theta}+9)}$$

The absolute value of this is less than

$$\int \frac{Rd\theta}{(R^2 - 1)(R^2 - 9)}$$

which tends to 0 as $R \to \infty$.

(This blank page for question 2)