University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

MAT C34F

Midterm Exam: Solutions

Friday, November 1, 2013; 120 minutes

No books or calculators may be used

You may use any theorems stated in class, as long as you state them clearly and correctly.

1. (25 points) Is the function $f(z)$ defined by

$$
f(z)=z^{2} \bar{z}
$$

differentiable at $z=0$? If you think so, give a proof and compute $\frac{d f}{d z}$ at this value; if you think not, show why the complex derivative at 0 does not exist.
Solution:

$$
\begin{aligned}
f^{\prime}(z)= & \lim _{h \rightarrow 0} \frac{(h+z)^{2} \overline{h+z}-z^{2} \bar{z}}{h} \\
& =\lim _{h \rightarrow 0} \frac{z^{2} \bar{h}+2 z \bar{z} h}{h} \\
& =z \bar{z}+\lim _{h \rightarrow 0} z^{2} \bar{h}
\end{aligned}
$$

This limit only exists when $z=0$ (because in polar coords $\bar{h} / h=e^{-2 i \theta}$ and the limit depends on θ, so it makes sense only when $z=0$ so that the function of h of which we are taking the limit is 0)
2. (25 points) Let γ denote the contour around the boundary of the unit disc $|z| \leq 1$, oriented counterclockwise. Evaluate the following integrals:
(a) $\int_{\gamma} \frac{1}{(z-3)(z-4)} d z$

Soln: (a)The function is non-holomorphic only at 3 and 4 and these points are outside γ. Hence by Cauchy the integral is 0
(b) $\int_{\gamma} z|z|^{4} d z$

Soln: Restricted to the unit circle, this function is z, which is holomorphic. So the integral is 0 by Cauchy
(c) $\int_{\gamma} \frac{1}{z^{2}} d z$

Soln: The line integral is

$$
\int_{0}^{2 \pi} e^{-2 i t} \cdot\left(i e^{i t}\right) d t=\int_{0}^{2 \pi} i e^{-i t} d t=0
$$

3. (25 points) Let f be the function

$$
f(z)=\frac{1}{4+z^{2}}
$$

on the unit disk $\{z \in \mathbf{C}:|\mathbf{z}| \leq \mathbf{1}\}$.
(a) What is the maximum value of $|f(z)|$ on the disk?

Solution: The Maximum modulus theorem says the maximum of the absolute value is attained on the boundary. So restrict to $z=e^{i \theta}$, and look for a minimum in $\left|4+e^{2 i \theta}\right|^{2}=17+8 \cos 2 \theta$. The minimum happens when $\theta= \pm \pi / 2(z= \pm i)$, and the value of f is $1 / 3$.
(b) At what value(s) of z is the maximum value of $|f(z)|$ attained? Answer: The value of z where $|f|$ takes its maximum value is $1 / 3$.

State all theorems you use.

4. (25 points)

(a) Compute the Laurent series at $z=1$ for the following function:

$$
f(z)=\frac{1}{z^{2}-1}
$$

Answer:

$$
\begin{aligned}
& \frac{1}{z^{2}-1}=\frac{1}{(z-1)(z-1+2)} \\
& =(z-1)^{-1} \frac{1}{2} \frac{1}{1+(z-1) / 2}
\end{aligned}
$$

Now use

$$
(1+w)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} w^{n}
$$

with $w=(z-1) / 2$ The radius of convergence of this series is 2 in other words the series converges if $|z-1|<2$.
(b) Classify the singularities of the following functions, and state the orders of all zeroes and poles:
i. $\frac{1}{\left(z^{2}+1\right) \sin z}$

Answer: $z= \pm i, z=n \pi$, poles of order 1, no zeroes
ii. $\frac{1}{z^{3}\left(z^{2}+1\right)}$

Answer: $z=0$ pole of order $3 z= \pm i$ pole of order 1

