University of Toronto at Scarborough Division of Mathematical Sciences

Midterm Test
MATC34H
Complex Variables

Examiner: L. Jeffrey
Date: October 21, 2002
Duration: 110 minutes

1. (a) Is the function

$$
f(z)=z|z|^{2}
$$

differentiable for any points z in the complex plane? If so, for which ones? What is the derivative at these points?
Solution:

$$
\begin{gathered}
f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=\frac{(z+h)^{2} \overline{z+h}-z^{2} \bar{z}}{h} \\
=\lim _{h \rightarrow 0} \frac{2 z \bar{z} h+z^{2} \bar{h}}{h}
\end{gathered}
$$

This gives $2|z|^{2}+z^{2} \frac{\bar{h}}{h}$ The latter limit is not well defined because if $h=r e^{i \theta}$ it gives $e^{-2 i \theta}$ which depends on the angle θ. So the derivative only exists at $z=0$
(b) Let $g(z)=\bar{z}$. Compute the limit

$$
\lim _{z \rightarrow 0} g(z+2) .
$$

Solution: This is $\lim _{z \rightarrow 0} \overline{z+2}=2$
2. (a) Compute the values of the following integrals around the circle $\gamma(1 ; 1)$, with centre 1 and radius 1 , and with counterclockwise orientation:

$$
\int_{\gamma(1 ; 1)} f(z) d z, \text { where } f(z)=\frac{1}{(z-1)(z-i)} .
$$

Solution: Partial fractions

$$
\frac{1}{(z-1)(z-i)}=\frac{A}{z-1}+\frac{B}{z-i}=\frac{A(z-i)+B(z-1)}{(z-1)(z-i)}
$$

This gives $A+B=0$ and $-i A-B=1$ so $A=\frac{1}{1-i}=(1+i) / 2$.
The circle contains 1 and does not contain i so we get $2 \pi i B$ by the Deformation Theorem.
 counterclockwise direction. Compute
$\int_{\gamma} f(z) d z$ where $f(z)=\frac{1}{(z-i)(z-3 i)}$.
Solution: The square contains i but does not contain 3i. Using partial fractions

$$
\begin{gathered}
\frac{1}{(z-i)(z-3 i)}=\frac{A}{z-i}+\frac{B}{z-3 i} \\
=\frac{A(z-3 i)+B(z-i)}{(z-i)(z-3 i)}
\end{gathered}
$$

so $A=-B$ and $-3 i A+i A=1$ or $i(-2 A)=1$ or $A=i / 2$. So by the Deformation Theorem the integral is $2 \pi i(i / 2)=-1$.
3. Can there be a function F with

$$
\frac{d F}{d z}=\frac{1}{z}
$$

for all z in the punctured disc $D^{\prime}(0,1)$ with centre 0 and radius 1 ? Solution: No. Such a function would have to equal $\log (z)$ but $\log (z)$ is a multivalued function on the punctured disc. $\log \left(r e^{i \theta}\right)=\ln (r)+i \theta$ but θ is not well defined on the punctured disc (since $e^{i \theta}=e^{i(\theta+2 \pi)}$).
4. (a) State the Cauchy-Riemann equations.

Solution: $u_{x}=v_{y}, v_{x}=-u_{y}$
(b) Let f be a holomorphic function,

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

for which $u(x, y)=v(x, y)$ for all x and y. Show that f is constant.
Solution: Same solution as midterm 01 question about a holomorphic function which is real everywhere (instead of its being real everywhere it is a real multiple of $1+i$ everywhere)

