Solution to Midterm , MATC34, 2001

1. (a) Series expansion for

$$
\begin{gathered}
f(z)=\frac{1+z}{1-z} \\
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \\
\frac{1+z}{1-z}=\sum_{n=0}^{\infty} z^{n}+\sum_{n=0}^{\infty} z^{n+1} \\
=1+2 \sum_{n=1}^{\infty} z^{n}
\end{gathered}
$$

(b) The radius of convergence of this series is 1 (because this is the radius of convergence of $\sum_{n=0}^{\infty} z^{n}$)
(c) i. $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ is the Taylor series for $f(z)=\exp (z)$, for any z
ii. $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ for all z with $|z|<1$
2. $\int_{\gamma} f(z) d z=$
(a) $f(z)=\frac{1-e^{z}}{z}$: this is holomorphic (it has a removable singularity at 0 so by Cauchy's theorem the integral is 0
(b) $f(z)=\sin (z)$: the integral is 0 by Cauchy since f is holomorphic everywhere
(c) $f(z)=\frac{z}{z-2}$: the integral is 0 by Cauchy since the only pole is at $z=2$ which is outside $\gamma(0 ; 1)$
3. $f(z)=\bar{z}$:
$\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=\frac{\bar{h}}{h}=e^{-2 i \theta} \mathrm{x}$ if $h=r e^{i \theta}$
So the limit as $h \rightarrow 0 \in \mathbf{C}$ does not exist.
4. Prove that if f holo. and $\operatorname{Re}(f)$ is constant then f is constant.

If $f(z)=c$ when z is real, then $f(z)-c=0$ on the real axis, a set with a limit point (for instance 0 is a limit point of the real axis). By the Identity Theorem $f(z)=c$ everywhere.
5. Compute the integral of the function $f(z)$

$$
f(z)=\frac{1}{z^{2}+z+1}
$$

about the following contours. All the contours should be traversed counterclockwise.

Solution:

$$
z^{2}+z+1=(z-A)(z-\bar{A})
$$

where

$$
A=\frac{-1+\sqrt{3} i}{2}=e^{2 \pi i / 3}
$$

We get

$$
2 \pi i\left(\frac{c_{1}}{z-A}+\frac{c_{2}}{z-\bar{A}}\right)
$$

By partial fractions $c_{1}=-c_{2}$. Also $-c \bar{A}+c A=1$ so $c=\frac{1}{A-\bar{A}}=\sqrt{3} i$.
(a) γ is a rectangle with vertices $-2,2,-2+2 i$ and $2+2 i$.

Solution: only A contributes so we get $2 \pi i c$
(b) γ is a rectangle with vertices $-2,2,-2-2 i$ and $2-2 i$.

Here only \bar{A} contributs so we get $-2 \pi i \bar{c}$
(c) γ is a circle with centre 0 and radius 2 .

Both A and \bar{A} contribute so the sum is 0

