Solution to First Midterm , MATC34, Oct 20, 2000

1. (a) Limit fails to exist, because if $z=r e^{i \theta}, \bar{z} / z=e^{-2 i \theta}$ and this depends on θ
(b) This is $f(z)=\bar{z}$. The limit as $z \rightarrow 0$ is 0 .
2. (this was discussed in class Oct 24 2013)
3. (a) By Cauchy's theorem, this integral is 0 because 12 is outside γ
(b) The denominator is $(z-3 / 2)(z-1 / 2)$ so the function is

$$
\frac{1}{2}\left(\frac{1}{(z-3 / 2)}-\frac{1}{(z-1 / 2)}\right)
$$

The integral of the first term is 0 (since $3 / 2$ is outside the contour of integration) and the integral of the second term is $2 \pi i$ (since $1 / 2$ is inside the contour of integration).
(c) This integral is 0 (this was discussed in class Oct 24 2013)
4. This is true by the Deformation Theorem.
5. If there were such a function, then the integral around any contour γ would be 0 , because it would be $F(b)-F(a)$ where a and b are the endpoints of the path (by the Fundamental Thm of Calculus) where $a=b$.
$\frac{1}{z^{2}+1}=\frac{1}{(z-i)(z+i)}=\frac{1}{2}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)$.
We take γ to be a small circle with centre i (and radius any number <1. Then γ contains $+i$ but not $-i$. So the integral of this function around γ is $2 \pi i$.

