Solution to First Midterm, MATC34, Oct 20, 2000

- 1. (a) Limit fails to exist, because if $z = re^{i\theta}$, $\bar{z}/z = e^{-2i\theta}$ and this depends on θ
 - (b) This is $f(z) = \overline{z}$. The limit as $z \to 0$ is 0.
- 2. (this was discussed in class Oct 24 2013)
- 3. (a) By Cauchy's theorem, this integral is 0 because 12 is outside γ
 - (b) The denominator is (z 3/2)(z 1/2) so the function is

$$\frac{1}{2} \left(\frac{1}{(z-3/2)} - \frac{1}{(z-1/2)} \right)$$

The integral of the first term is 0 (since 3/2 is outside the contour of integration) and the integral of the second term is $2\pi i$ (since 1/2 is inside the contour of integration).

- (c) This integral is 0 (this was discussed in class Oct 24 2013)
- 4. This is true by the Deformation Theorem.
- 5. If there were such a function, then the integral around any contour γ would be 0, because it would be F(b) F(a) where a and b are the endpoints of the path (by the Fundamental Thm of Calculus) where a = b.

$$\frac{1}{z^2+1} = \frac{1}{(z-i)(z+i)} = \frac{1}{2} \left(\frac{1}{z-i} - \frac{1}{z+i} \right).$$

We take γ to be a small circle with centre *i* (and radius any number < 1. Then γ contains +i but not -i. So the integral of this function around γ is $2\pi i$.