University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F

2018/19

 $\frac{\text{Final}}{\text{Thursday, December 20, 2018, 7:00 pm }-10:00 \text{ pm}}$

FAMILY NAME:
GIVEN NAMES:
STUDENT NUMBER:
SIGNATURE:

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

- There are 8 numbered pages in this exam. It is your responsibility to ensure that, at the start of the exam, this booklet has all its pages.
- No books or calculators may be used. NO cell phones or pagers are allowed at the desk or on your person during the exam.
- You may use any theorems stated in class, as long as you state them clearly and correctly.

FOR MARKERS ONLY	
Question	Marks
1	/ 10
2	/ 15
3	/ 15
4	/ 15
5	/ 15
6	/ 15
7	/ 15
TOTAL	/100

No books or calculators may be used

You may use any theorems stated in class, as long as you state them clearly and correctly.

(1) (10 pts) (a) State the Cauchy-Riemann equations.

(b) Let f(u, v) be a complex-valued function on the complex plane. Show that if $\partial f/\partial v = 0$ for all u and v then f is constant.

(2) (15 pts) Use the Cauchy residue theorem to compute

$$\int_{|z|=2} \frac{dz}{(z-1)(z-i)^2}.$$

The line integral is around a circle of radius 2 and center 0 in the complex plane.

(3) (15 pts)

(a) (8 points) Find the Laurent series of $\frac{1}{(z+1)^2}$ around 0. What it its radius of convergence

(b) (7 pts) Find the Laurent series of $\frac{1}{z+1}$ around -1. What is its radius of convergence?

(4) (15 pts)

Compute the integral

$$\int_{\gamma} z^n (1-z)^m dz$$

where m is a nonnegative integer and n is an i integer. The curve γ is a circle of radius 2 and center 0 in the complex plane.

(5) (15 pts) (a) Use the Cauchy integral formula to compute the integral

$$\int_{\gamma} \frac{z^3 + 5}{z - i} dz$$

Here γ is a circle of radius 2 and center 0 in the complex plane.

(6) (15 pts)
(a) Find the singularities of cos(z)/sin(z). State the type of singularity (removable singularity, pole, essential singularity).
(b) Compute the residue of cos(z)/sin(z) at z = 0.

(7) (15 points) Use residues to compute the integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}.$$

(This blank page for question 2)