# University of Toronto at Scarborough Department of Computer and Mathematical Sciences 

Final
Thursday, December 20, 2018, 7:00 pm -10:00 pm

FAMILY NAME: $\qquad$
GIVEN NAMES: $\qquad$
STUDENT NUMBER: $\qquad$

SIGNATURE:

## DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO.

- There are 8 numbered pages in this exam. It is your responsibility to ensure that, at the start of the exam, this booklet has all its pages.
- No books or calculators may be used. NO cell phones or pagers are allowed at the desk or on your person during the exam.
- You may use any theorems stated in class, as long as you state them clearly and correctly.

| FOR MARKERS ONLY |  |
| :---: | ---: |
| Question | Marks |
| 1 | $/ 10$ |
| 2 | $/ 15$ |
| 3 | $/ 15$ |
| 4 | $/ 15$ |
| 5 | $/ 15$ |
| 6 | $/ 15$ |
| 7 | $/ 15$ |
| TOTAL | $\mathbf{1 0 0}$ |

## No books or calculators may be used

You may use any theorems stated in class, as long as you state them clearly and correctly.
(1) (10 pts) (a) State the Cauchy-Riemann equations.
(b) Let $f(u, v)$ be a complex-valued function on the complex plane. Show that if $\partial f / \partial v=0$ for all $u$ and $v$ then $f$ is constant.
(2) (15 pts) Use the Cauchy residue theorem to compute

$$
\int_{|z|=2} \frac{d z}{(z-1)(z-i)^{2}}
$$

The line integral is around a circle of radius 2 and center 0 in the complex plane.
(3) (15 pts)
(a) (8 points) Find the Laurent series of $\frac{1}{(z+1)^{2}}$ around 0 . What it its radius of convergence
(b) ( 7 pts ) Find the Laurent series of $\frac{1}{z+1}$ around -1 . What is its radius of convergence?
(4) (15 pts)

Compute the integral

$$
\int_{\gamma} z^{n}(1-z)^{m} d z
$$

where $m$ is a nonnegative integer and $n$ is an i integer. The curve $\gamma$ is a circle of radius 2 and center 0 in the complex plane.
(5) (15 pts) (a) Use the Cauchy integral formula to compute the integral

$$
\int_{\gamma} \frac{z^{3}+5}{z-i} d z
$$

Here $\gamma$ is a circle of radius 2 and center 0 in the complex plane.
(6) (15 pts)
(a) Find the singularities of $\frac{\cos (z)}{\sin (z)}$. State the type of singularity (removable singularity, pole, essential singularity).
(b) Compute the residue of $\frac{\cos (z)}{\sin (z)}$ at $z=0$.
(7) (15 points)

Use residues to compute the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}
$$

(This blank page for question 2)

