University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics

MAT C34F

2019/2020

Problem Set #1

Due date: Thursday, September 12, 2019 at the beginning of class

(1) Prove that

$$f(z) = \sqrt{\operatorname{Re}(z)\operatorname{Im}(z)}$$

satisfies the Cauchy-Riemann equations at z = 0 but is not differentiable there. (2) Prove that, for $z \in \mathbb{C}$,

$$|z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2|z|}.$$

(3) Prove that for $z, w \in \mathbb{C}$,

Re
$$\left(\frac{w+z}{w-z}\right) = \frac{|w|^2 - |z|^2}{|w-z|^2}.$$

- (4) Find the real and imaginary parts of the following functions as functions of x and y: (a) z^3 (b) $(z + z^{-1}) (z \neq 0)$ (c) $\frac{1}{1-z} (z \neq 1)$

(5) Show that $f(z) = \overline{z}$ and g(z) = Im(z) do not satisfy the Cauchy-Riemann equations.

- (6) Which of the following is differentiable at z = 0? Give a proof or a counterexample. (a) $|z|^4$ (b) $\operatorname{Re}(z) + \operatorname{Im}(z)$
 - (c) $\operatorname{Re}(z)\operatorname{Im}(z)$