University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

MAT C34F

$\underline{\text { Problem Set \#6 }}$

Due date: Thursday, November 28, 2013 at the beginning of class

Do the following problems.

1. Find the images of (a) $\{z: 0<\arg (z)<\pi / 6\}$ (b) $D(0 ; 2)$ (c) $\{z: 0<\operatorname{Im}(z)<1\}$ under $z \mapsto 1 / z$.
2. Describe the image of $\{z: 0<\arg (z)<\pi / 2\}$ under $z \mapsto w=\frac{z-1}{z+1}$
3. Describe the image of $\{z: \operatorname{Re}(z)>0\}$ under $z \mapsto w$ where $\frac{w-1}{w+1}=2 \frac{z-1}{z+1}$
4. Find Möbius transformations to map
(i) $1, i, 0$ to $1, i,-1$ respectively
(ii) $0,1, \infty$ to $\infty,-i, 1$ respectively
5. Find the Möbius transformation mapping $0,1, \infty$ to $1,1+i, i$ respectively. Under this mapping what is the image of a circular arc through -1 and $-i$?
6. Describe the Möbius transformations mapping the open upper half plane onto $D(0 ; 1)$ which map the imaginary axis onto the real axis.
7. Find the image of (i) $\{z: 0<\operatorname{Arg}(z)<\pi / 4\}$ under $z \mapsto i z^{4}$
(ii) Find the image of $\{z: 0<\operatorname{Re}(z)<1,0<\operatorname{Im}(z)<\pi / 2\}$ under $z \mapsto e^{z}$
8. Construct a conformal map onto $D(0 ; 1)$ for $\{z: 1-<\operatorname{Re}(z)<1\}$
9. Check that each of the following functions is harmonic on the indicated set, and find a holomorphic function of which it is the real part.
(i) $\sin \left(x^{2}-y^{2}\right) e^{-2 x y}$
(ii) $\log \left(x^{2}+y^{2}\right)^{3 / 2}$ (on the open first quadrant).
