University of Toronto at Scarborough Department of Computer and Mathematical Sciences

MAT C34F
2018/19

Problem Set \#1

Due date: Thursday, September 20, 2018 at the beginning of class
REVISED VERSION September 13, 2018. The only change is to the reading list. The assignment questions have not changed.

Reading: Priestley Chap. 1, and Chap 3, Chap. 5 and Chap. 6
Solve the following problems.
(1) Prove that the function $\exp (\bar{z})$ is not holomorphic anywhere.
(2) Find all the roots of the equation $\sin (z)=\cosh (4)$ by equating the real and imaginary parts of $\sin (z)$ and $\cosh (4)$.
(3) Express each of the following in polar coordinates: $i, 1-i, \sqrt{3}-i$
(4) Express each of the following as $x+i y: e^{4 \pi i / 3}, e^{5 \pi i / 6},(1+i)^{-3}$
(5) Describe each of the following sets geometrically. Which are open, which are closed, and which are compact? (i) $\{z:|z-1-i|=1\}$ (ii) $\{z:|z-1+i| \geq|z-1-i|\}$ (iii) $\{z:|z+i| \neq|z-i|\}$ (iv) $\left\{z=|z| e^{i \theta}: \pi / 4<\theta<3 \pi / 4\right\}$
(6) For each of the following choices of f, either obtain $\lim _{z \rightarrow 0} f(z)$ or prove that the limit does not exist. (i) $|z|^{2} / z$,
(ii) \bar{z} / z
(7) Prove that f is continuous on \mathbb{C} when (i) $f(z)=\bar{z}$
(ii) $f(z)=\operatorname{Im}(z)$
(iii) $f(z)=\operatorname{Re}\left(z^{3}\right)$
(8) Prove that f defined by $f(z)=z^{5} /|z|^{4}(z \neq 0), f(0)=0$ satisfies the CauchyRiemann equations at $z=0$ but is not differentiable there.
(9) Which of the following are holomorphic?
(i) $e^{z} / z(z-1)(z-2)$
(ii) $\left(1+e^{z}\right)^{-1}$
(10) Where do the following series define holomorphic functions?
(i) $\sum_{n=1}^{\infty}(-1)^{n} z^{n} / n$!
(ii) $\sum_{n=}^{5^{5 n}}$
(11) Determine for which values of z the following series converge absolutely:
(i) $\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{2^{n}}$
(ii) $\sum_{n=0}^{\infty}\left(\frac{2^{n}}{z+1}\right)^{n}$
(12) Write down an expansion of the form $\sum_{n=0}^{\infty} c_{n} z^{n}$ for
(i) $\frac{1}{1+z^{4}}$
(ii) $\frac{1}{1+z+z^{2}}$
(13) Find all solutions of $\cos ^{2} z=4$.

