Solutions Assignment \#6 MATA33
(1) Section 2.8 Problems
\#2 $f(x, y)=3 x^{2} y-4 y \quad f(2,-1)=3(2)^{2}(-1)-4(-1)=-8$
\#4

$$
\begin{aligned}
g(x, y, z) & =x^{2} y z+x y^{2} z+x y z^{2} \\
g(3,1,-2) & =(3)^{2}(1)(-2)+(3)(1)^{2}(-2)+(3)(1)(-2)^{2} \\
& =-18-6+12=-12
\end{aligned}
$$

\#8 $g\left(P_{A}, P_{B}\right)=P_{A}^{2} \sqrt{P_{B}}+9 \quad g(4,9)=4^{2} \sqrt{9}+9=57$
$\#_{10} F(x, y, z)=\frac{2 x}{(y+1) z} \quad F(1,0,3)=\frac{2}{(1)(3)}=\frac{2}{3}$
\#12 $f(x, y)=x^{2} y-3 y^{3}$

$$
\begin{aligned}
& f(r+t, r)=(r+t)^{2} r-3 r^{3} \\
& =r^{3}+2 r^{2} t+t^{2} r-3 r^{3} \\
& =r\left(t^{2}+2 r t-2 r^{2}\right)
\end{aligned}
$$

\#16 A plane parallel to the $y, z$-plane has the form $x=k$ where $k$ is a constant (see page 119 and the diagrams there).
$\because(-2,0,0)$ is on the plane, $k=2$ so the equation is $x=-2$.
\#18 Any plane parallel to the $y, z$-plane has (as in \#16) general equation $x=k, k$ is a constant. $\because$ the point $(96,-2,2)$ is on the plane, we have $k=96$, so the equation is $x=96$.
\#20 We sketch the surface $2 x+y+2 z=6$.
Solution: The surface is a plane because its equation has the form of the equation of a plane: $A x+B y+C z+D=0$ (p. 119 )
The plane intersects the coordinate axis at the intercepts.

$$
x \text {-intercept } \rightarrow \text { sub-in } y=z=0 \quad \rightarrow \quad x=3
$$

$y$-intercept $\rightarrow$ sub-in $x=z=0 \rightarrow y=6$ Point is $(0,6,0)$
$z$-intercept $\rightarrow$ sub-in $x=y=0 \rightarrow z=3$


Only that part of the plane in the $1^{\text {st }}$ octant is shown. The plane continues in the directions of the arrows.

\#24 We sketch the surface $y=3 z+2$.
Solution: The surface is a plane because it can be written in the form of a plane in $\mathbb{R}^{3}: A x+B y+C z+D=0(p .119)$
Here: $A=0, B=1, C=-3, D=-2$

The $y, z$-trace is $y=3 z+2$ (that is the line of intersection of the plane and the $y, z$-plane). Since $x$ is missing from the given equation, $x$ can assume any real value.
$\therefore \forall x \in \mathbb{R}$, we have the line $y=3 z+2$
"For All" Intercepts are (ie points) $\left(0,0,-\frac{2}{3}\right),(0,2,0)$
\#26 Sketch the surface $y=z^{2}$
Solution: The $y, z$-trace is the parabola $y=z^{2}$. Since $x$ does not appear in the equation, $x$ can take on any real value.



\#28 We sketch the surface $x^{2}+4 y^{2}=1$
Solution: The "x,y-trace" is the ellipse $x^{2}+4 y^{2}=1$ (this is the intersection of our surface $x^{2}+4 y^{2}=1$ and the $x, y$-plane (i.e. $\left.z=0\right)$ ) Since $z$ does not appear in the equation of the surface, $z$ can assume any real value.

(2) Section 17.1 Problems
\#2

$$
\begin{aligned}
f(x, y)=2 x^{2}+3 x y & f_{x}(x, y)=4 x+3 y \\
& f_{y}(x, y)=3 x
\end{aligned}
$$

\#6

$$
\begin{aligned}
& g(x, y)=\left(x^{2}+1\right)^{2}+\left(y^{3}-3\right)^{2}+5 x y^{3}-2 x^{2} y^{2} \\
& g_{x}(x, y)=2\left(x^{2}+1\right)(2 x)+5 y^{3}-4 x y^{2} \quad g_{y}(x, y)=2\left(y^{3}-3\right)\left(3 y^{2}\right)+15 x y^{2} \\
& 2 g
\end{aligned}
$$

Canalso write i as $\frac{\partial g}{\partial x}(x, y)$ and $\}$ as $\frac{\partial g}{\partial y}(x, y)$
\#8

$$
\begin{aligned}
& g(w, z)=\sqrt[3]{\omega^{2}+z^{2}}=\left(w^{2}+z^{2}\right)^{1 / 3} \\
& g_{w}(w, z)=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-\frac{2}{3}}(2 w)=\frac{2 w}{3\left(w^{2}+z^{2}\right)^{2 / 3}} \\
& g_{z}(w, z)=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-\frac{2}{3}}(2 z)=\frac{2 z}{3\left(w^{2}+z^{2}\right)^{2 / 3}}
\end{aligned}
$$

Can also write $\frac{\partial g}{\partial \omega}(w, z)$ for $g_{\omega}(w, z)$ and $\frac{\partial g}{\partial z}(\omega, z)$ for $g_{z}(\omega, z)$.
\#10

$$
\begin{aligned}
h(u, v) & =\frac{8 u v^{2}}{u^{2}+v^{2}} \\
h_{u}(u, v) & =\frac{8 v^{2}\left(u^{2}+v^{2}\right)-8 u v^{2}(2 u)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{8 v^{2}\left(u^{2}+v^{2}-2 u^{2}\right)}{\left(u^{2}+v^{2}\right)^{2}} \\
& =\frac{8 v^{2}\left(v^{2}-u^{2}\right)}{\left(u^{2}+v^{2}\right)^{2}} \\
h_{v}(u, v) & =\frac{16 u v\left(u^{2}+v^{2}\right)-8 u v^{2}(2 v)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{8 u v\left(2 u^{2}+2 v^{2}-2 v^{2}\right)}{\left(u^{2}+v^{2}\right)^{2}} \\
& =\frac{16 u^{3} v}{\left(u^{2}+v^{2}\right)^{2}}
\end{aligned}
$$

\#14 $h(x, y)=\frac{\sqrt{x+9}}{x^{2} y+y^{2} x}=\frac{(x+9)^{1 / 2}}{x^{2} y+y^{2} x}$

$$
h_{x}(x, y)=\frac{\frac{1}{2}(x+9)^{-1 / 2}\left(x^{2} y+y^{2} x\right)-(x+9)^{1 / 2}\left(2 x y+y^{2}\right)}{\left(x^{2} y+y^{2} x\right)^{2}}
$$

$$
\begin{aligned}
h_{y}(x, y) & =(x+9)^{1 / 2}(-1)\left(x^{2} y+y^{2} x\right)^{-2}\left(x^{2}+2 x y\right) \\
& =-\frac{(x+9)^{1 / 2}\left(x^{2}+2 x y\right)}{\left(x^{2} y+y^{2} x\right)^{2}}=\frac{-\sqrt{x+9}(x+2 y)}{x y^{2}(x+y)^{2}}
\end{aligned}
$$

\#16

$$
\begin{aligned}
& z=\left(x^{3}+y^{3}\right) e^{x y+3 x+3 y} \\
& z_{x}=\frac{\partial z}{\partial x}=3 x^{2} e^{x y+3 x+3 y}+\left(x^{3}+y^{3}\right) e^{x y+3 x+3 y}(y+3) \\
& (y+3) \\
& =\left(3 x^{2}+\left(x^{3}+y^{3}\right)(y+3)\right) e^{x y+3 x+3 y} \\
& z_{y}=\frac{\partial z}{\partial y}=3 y^{2} e^{x y+3 x+3 y}+\left(x^{3}+y^{3}\right) e^{x y+3 x+3 y}(x+3) \\
& =\left(3 y^{2}+\left(x^{3}+y^{3}\right)(x+3)\right) e^{x y+3 x+3 y}
\end{aligned}
$$

\#20 $f(r, s)=\sqrt{r s} e^{2+r}=r^{1 / 2} s^{1 / 2} e^{2+r}$

$$
\begin{aligned}
f_{r}(r, s) & =\frac{1}{2} r^{-1 / 2} s^{1 / 2} e^{2+r}+r^{1 / 2} s^{1 / 2} e^{2+r} \\
& =\left(\sqrt{r s}+\frac{1}{2} \sqrt{\frac{s}{r}}\right) e^{2+r} \\
f_{s}(r, s) & =\frac{1}{2} r^{1 / 2} s^{-1 / 2} e^{2+r}=\frac{1}{2} \sqrt{\frac{r}{s}} e^{2+r}
\end{aligned}
$$

\#28

$$
\begin{aligned}
& z=\sqrt{2 x^{3}+5 x y+2 y^{2}}=\left(2 x^{3}+5 x y+2 y^{2}\right)^{1 / 2} \\
& \frac{\partial z}{\partial x}=\frac{1}{2}\left(2 x^{3}+5 x y+2 y^{2}\right)^{-1 / 2} \cdot\left(6 x^{2}+5 y\right)
\end{aligned}
$$

$$
\left.\therefore \frac{\partial z}{\partial x}\right|_{\substack{x=0 \\ y=1}}=\frac{5}{2 \sqrt{2}}
$$

( $\because$ we are evaluating there is no need to simplify)
$\#_{30} g(x, y, z)=\frac{3 x^{2} y^{2}+2 x y+x-y}{x y-y z+x z}$
(Similar comment as above in \#28 regarding evaluation 4

$$
\left(6 x^{2} y+2 x-1\right)(x y-y z
$$ no simplify)

$$
g_{y}(x, y, z)=\frac{\left(3 x^{2} y^{2}+2 x y+x-y\right)(x-z)}{(x y-y z+x z)^{2}}
$$

$$
\therefore g_{y}(1,1,5)=\frac{(6+2-1)(1-5+5)-(3+2+1-1)(1-5)}{(1-5+5)^{2}}
$$

$$
=27
$$

\#36 $u=f(t, r, z)=\frac{(1+r)^{1-z} \ln (1+r)}{(1+r)^{1-z}-t}$
We calculate $\frac{\partial u}{\partial z}=u_{z}$ and verify the claim

$$
u_{z}=\frac{t(1+r)^{1-z} \ln ^{2}(1+r)}{\left[(1+r)^{1-z}-t\right]^{2}}
$$

Re-write $u$ as

$$
\begin{aligned}
\therefore u_{z} & =\ln (1+r)\left[\frac{(1+r)^{1-z} \ln (1+r)(-1)\left[(1+r)^{1-z}-t\right]+(1+r)^{1-z}(1+r)^{1-z} \ln (1+r)}{\left[(1+r)^{1-z}-t\right]^{2}}\right] \\
& =\frac{\ln ^{2}(1+r)(1+r)^{1-z}\left[-(1+r)^{1-z}+t+(1+r)^{1-z}\right]}{\left[(1+r)^{1-z}-t\right]^{2}} \\
& =\frac{t(1+r)^{1-z} \ln ^{2}(1+r)}{\left[(1+r)^{1-z}-t\right]^{2}} \text { as required. }
\end{aligned}
$$

\#38 $r_{L}=r+D \frac{\partial r}{\partial D}+\frac{d C}{d D}$ is given
Elasticity is $\eta=\frac{r / D}{\partial r / \partial D}$. We verify that (Given)

$$
r_{L}=r\left[\frac{1+\eta}{\eta}\right]+\frac{d C}{d D}
$$

Solution:

$$
\eta=\frac{r / D}{\partial r / \partial D} \rightarrow \frac{\partial r}{\partial D}=\frac{r}{D \eta}
$$

Substitute to get $r_{L}=r+D \frac{r}{D \eta}+\frac{d C}{d D}$

$$
=r\left[1+\frac{r}{\eta}\right]+\frac{d C}{d D}=r\left[\frac{1+\eta}{\eta}\right]+\frac{d C}{d D} .
$$

\#34 Given is $z=\frac{x^{2}+y^{2}}{e^{x^{2}+y^{2}}}$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{2 x\left(e^{x^{2}+y^{2}}\right)-\left(x^{2}+y^{2}\right) e^{x^{2}+y^{2}}(2 x)}{\left(e^{x^{2}+y^{2}}\right)^{2}} \\
& \frac{\partial z}{\partial y}=\frac{2 y\left(e^{x^{2}+y^{2}}\right)-\left(x^{2}+y^{2}\right) e^{x^{2}+y^{2}}(2 y)}{\left(e^{x^{2}+y^{2}}\right)^{2}} \\
& \left.\frac{\partial z}{\partial x}\right|_{\substack{x=0 \\
y=0}}=\frac{(0)\left(e^{0}\right)-(0) e^{0}(0)}{\left(e^{0}\right)^{2}}=0 \\
& \left.\frac{\partial z}{\partial y}\right|_{\substack{x=1 \\
y=1}}=\frac{2 e^{2}-2 e^{2}(2)}{\left(e^{2}\right)^{2}}=-\frac{2}{e^{2}}
\end{aligned}
$$

\#35 (As an extra solution)

$$
\begin{aligned}
& z=x e^{x-y}+y e^{y-x} \\
& \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=e^{x-y}+x e^{x-y}+y e^{y-x}(-1)+x e^{x-y}(-1)+ \\
& e^{y-x}+y e^{y-x} \\
&=e^{x-y}+e^{y-x} \text { as required. }
\end{aligned}
$$

(3) Amount of an Annuity formula is

$$
\begin{aligned}
S & =f(R, r, n)=R\left[\frac{(1+r)^{n}-1}{r}\right] \\
\frac{\partial S}{\partial R} & =\frac{(1+r)^{n}-1}{r} \\
\frac{\partial S}{\partial r} & =R\left[\frac{n(1+r)^{n-1} r-\left((1+r)^{n}-1\right)}{r^{2}}\right] \\
& =\frac{R}{r^{2}}\left[n(1+r)^{n-1}-(1+r)^{n}+1\right] \\
\frac{\partial S}{\partial n} & =\frac{R}{r}(1+r)^{n} \ln (1+r)
\end{aligned}
$$

(4) $z=f(x, y)=x^{2}-y+1$
(a) Level curves are determined by the equation $f(x, y)=c, c \in \mathbb{R}$ is a constant.
For $L(0), c=0$, so we get $x^{2}-y+1=0$ hence $y=x^{2}+1$ gives the points $(x, y) \in L(0)$.
For $L(-2), c=-2$, so we get $x^{2}-y+1=-2$ hence $y=x^{2}+3$ gives the points $(x, y) \in L(-2)$.
For $L(5), c=5$, so we get $x^{2}-y+1=5$ hence $y=x^{2}-4$ gives the points $(x, y) \in L(5)$. These are graphed together on the next page.

(b)

$$
\begin{aligned}
g(x, y) & =f(f(x, y), y)=f\left(x^{2}-y+1, y\right) \\
& =\left(x^{2}-y+1\right)^{2}-y+1 \\
& =\left(x^{2}-y+1\right)\left(x^{2}-y+1\right)-y+1 \\
& =x^{4}-x^{2} y+x^{2}-y x^{2}+y^{2}-y+x^{2}-y+1-y+1 \\
& =x^{4}-2 x^{2} y+2 x^{2}-3 y+y^{2}+2 \\
h(x, y) & =f(x, f(x, y))=f\left(x, x^{2}-y+1\right) \\
& =x^{2}-\left(x^{2}-y+1\right)+1=x^{2}-x^{2}+y-1+1=y
\end{aligned}
$$

(c) Assume $x \neq y$ and $f(x, y)=f(y, x)$

$$
\begin{aligned}
& \therefore x^{2}-y+1=y^{2}-x+1 \\
& \therefore x^{2}-y^{2}+x-y=0 \rightarrow(x-y)(x+y+1)=0 \\
& \because x \neq y, x-y \neq 0 \text {, so } x+y+1=0
\end{aligned}
$$

$\therefore$ we have that $y=-x-1$ as required.
(d) Now we assume $f(x, y)=x^{2}-y+1$ where $x \geqslant 0$ is the number of units of $X$ sold and $y \geqslant 0$ is the number of units of $Y$ sold.

$$
P=\{(x, y) \mid f(x, y)>0, x \geqslant 0, y \geqslant 0\}
$$

$L(0)$ was $y=x^{2}+1$. We want $f(x, y)>0$ which gives $x^{2}-y+1>0$ so $y<x^{2}+1$

$$
\therefore P=\left\{(x, y) \mid y<x^{2}+1, x, y \geqslant 0\right\}
$$

Lastly, we consider $f_{x}(x, y)=f_{y}(x, y)=0 \quad(*)$

$$
f_{x}(x, y)=2 x \quad f_{y}(x, y)=-1
$$

$\therefore$ we never have $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$.
$\therefore$ there are no points in $P$ satisfying $(*)$.
(5) Let $u(x, y)=z=\sqrt{2 x-y+1}$
(a) The domain of $u$ is $\{(x, y) \mid 2 x-y+1 \geqslant 0\}=D$

$$
\therefore \quad D=\{(x, y) \mid y \leqslant 2 x+1\}
$$

Here's a sketch of $D$ ( $D_{\text {is shaded) }}$

(b) $L(c)=\{(x, y) \mid u(x, y)=c\}=\{(x, y) \mid \sqrt{2 x-y+1}=c\}$
$L(0)$ gives $2 x-y+1=0$ so $y=2 x+1$
$L(1)$ gives $2 x-y+1=1$ so $y=2 x$
If $c \in[0,1]$ then $\sqrt{2 x-y+1}=c$ gives

$$
2 x-y+1=c^{2} \text { so } y=2 x+1-c^{2}
$$

Sketches of these are below.



Lastly, suppose $c<0$. For $L(c)$ we consider $u(x, y)=c$, so $\sqrt{2 x-y+1}=c \quad$ But $\nexists(x, y) \quad \exists$ :
$\sqrt{2 x-y+1}=c$ if $c<0$ because $\sqrt{2 x-y+1} \geqslant 0$
$\nexists(x, y) \in D . \quad \therefore \quad L(c)=\phi$ if $c<0$.
"For All" c "empty set"
(c) $u_{x}(x, y)=\frac{1}{2}(2 x-y+1)^{-1 / 2}(2)=\frac{1}{\sqrt{2 x-y+1}}$

$$
u_{y}(x, y)=\frac{1}{2}(2 x-y+1)^{-1 / 2}(-1)=\frac{-1}{2 \sqrt{2 x-y+1}}
$$

The domains of $u_{x}(x, y)$ and $u_{y}(x, y)$, are
not include the line


$$
\begin{aligned}
& y=2 x+1 \\
&\left(u_{x}(x, y)+u_{y}(x, y)\right) u(x, y) \\
&=\left(\frac{1}{\sqrt{2 x-y+1}}-\frac{1}{2 \sqrt{2 x-y+1}}\right) \sqrt{2 x-y+1} \\
&= \frac{1}{2 \sqrt{2 x-y+1}} \sqrt{2 x-y+1}=\frac{\frac{1}{2}}{{ }_{\text {constant }}} \text { for all }(x, y) \in E .
\end{aligned}
$$

(6) Let $z=F(s, t)=\sqrt{s^{2}+t^{2}}$
(a) $L(0)=\left\{(s, t) \mid \sqrt{s^{2}+t^{2}}=0\right\}=\{(0,0)\} \ldots$ the origin.


For $L(c)$ where $c \in[1,2]$, we consider

$$
F(s, t)=c \rightarrow \sqrt{s^{2}+t^{2}}=c
$$


"/ $L(c)$ where $c$ ranges from 1 to $2 \ldots$ a "doughnut".
(b) $z_{s}=\frac{\partial z}{\partial s}=\frac{1}{2}\left(s^{2}+t^{2}\right)^{-1 / 2}(2 s)=\frac{s}{\sqrt{s^{2}+t^{2}}}$

$$
\begin{aligned}
& z_{t}=\frac{\partial z}{\partial t}=\frac{1}{2}\left(s^{2}+t^{2}\right)^{-1 / 2}(2 t)=\frac{t}{\sqrt{s^{2}+t^{2}}} \\
& \therefore s z_{s}+t z_{t}=\frac{s^{2}}{\sqrt{s^{2}+t^{2}}}+\frac{t^{2}}{\sqrt{s^{2}+t^{2}}}=\sqrt{s^{2}+t^{2}} \\
& \therefore z \quad \text { if }
\end{aligned}
$$

(This is another example of a

$$
=z \quad(\text { if }(s, t) \neq
$$ "partial differential equation")

(7) (a) $z=x^{y} \quad z_{x}=y x^{y-1} \quad z_{y}=x^{y} \ln (x) \quad$ (only if $x>0$ )

$$
\begin{aligned}
\text { (b) } z & =\log _{x}(y)=\frac{\ln (y)}{\ln (x)}=\ln (y)[\ln (x)]^{-1} \\
z_{x} & =-\ln (y)[\ln (x)]^{-2} \frac{1}{x}=\frac{-\ln (y)}{x[\ln (x)]^{2}}=-\frac{\log _{x}(y)}{x \ln (x)} \\
z_{y} & =\frac{1}{y \ln (x)}
\end{aligned}
$$

## \# 9.

(a) Since $\ln t$ is only defined for $t>0, f(x, y)=\ln (x+y-1)$ is only defined if $x+y-1>0$ or $y>1-x$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y>1-x\right\}$. This is the region of the plane above the line $y=1-x$, excluding the line.
(b) $f(x, y)=e^{3 x y}$ is defined for all pairs $(x, y)$ of real numbers.
(c) Since $\sqrt{t}$ is only defined for $t \geq 0, f(x, y)=\sqrt{x+y}$ is defined for $y \geq-x$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq-x\right\}$. This is the region of the plane above the line $y=-x$, including the line.
(d) Since $\ln t$ is only defined for $t>0, f(x, y)=\ln \left(9-x^{2}-9 y^{2}\right)$ is only define if $9-x^{2}-9 y^{2}>0$ or $x^{2}+9 y^{2}<9$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+9 y^{2}<9\right\}$. This is the region of the plane inside the ellipse $x^{2}+9 y^{2}=9$, but excluding the ellipse.
(e) Since the domain of $\sqrt{1-x^{2}}$ is $-1<x<1$ and the domain of $\sqrt{1-y^{2}}$ is $-1<y<1$, the domain of $f(x, y)=\sqrt{1-x^{2}}-$ $\sqrt{1-y^{2}}$ is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}$. This is the part of the plane inside the square $[-1,1] \times[-1,1]$, but excluding the boundary lines.
(f) We first note that $\sqrt{y-x^{2}}$ is only defined if $y-x^{2} \geq 0$ or $y \geq x^{2}$ - the region of the plane above the graph of $y=x^{2}$, including the curve $y=x^{2}$. Also $\frac{1}{1-x^{2}}$ is only define if $1-x^{2} \neq 0$ or $x \neq \pm 1$. hence the domain of $f(x, y)=\frac{\sqrt{y-x^{2}}}{1-x^{2}}$ is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x^{2}, x \neq \pm 1\right\}$. This is the region of the plane above the graph of $y=x^{2}$, including the curve $y=x^{2}$, but excluding the lines $x=-1$ and $x=1$.


## \# 10.

(a) The level curves are parallel lines. The graph of the function is a plane with $x y$-trace $y=-x$.

(b) The level curves are circles of radius $\sqrt{c}$ at the origin. Since $x^{2}+y^{2}$ can never be negative, we can not draw level curves for $c=-2$ and $c=-1$. When $c=0$, the level curve is only a point. The graph of the function is a paraboloid (bowl) opening upward with vertex at the origin.
(c) The level curve for each $c, c \neq 0$ is a pair of hyperbolas in opposite quadrants of the plane. When $c=0$, we get the $x-$ axis and the $y$ - axis. The graph of the function is saddle shaped.

(d) The level curves are parabolas. The graph of the function has $x y-$ trace the parabola $y=x^{2}$. Hence it is a parabolic cylinder.
(e) The level curves are ellipses centered at the origin. Since $x^{2}+2 y^{2}$ can never be negative, we can not draw level curves for $c=-2$ and $c=-1$. When $c=0$, the level curve is only a point. The graph of the function is an ellipitical paraboloid opening upward with vertex at the origin.


