University of Toronto Scarborough Department of Computer \& Mathematical Sciences

Solutions \#6
Section 2.8 (12ed. 17.1)
2. $f(x, y)=3 x^{2} y-4 y . f(2,-1)=3(2)^{2}(-1)-4(-1)=-12+4=-8$.
4. $g(x, y, z)=x^{2} y z+x y^{2} z+x y z^{2} \cdot g(3,1,-2)=(3)^{2}(1)(-2)+(3)(1)^{2}(-2)+(3)(1)(-2)^{2}=-18-6+12=$ -12 .
6. $h(r, s, t, u)=r u . h(1,5,3,1)=(1)(1)=1$.
$6^{*} . h(r, s, t, u)=\ln (r u) . h(1,5,3,1)=\ln ((1)(1))=\ln 1=0$.
8. $g\left(p_{A}, p_{B}\right)=p_{A}^{2} \sqrt{p_{B}}+9 . g(4,9)=(16)(3)+9=57$.
$8^{*} . g\left(p_{A}, p_{B}\right)=p_{A} \sqrt{p_{B}}+10 . g(8,4)=8 \sqrt{4}+10=8(2)+10=16+10=26$.
10. $F(x, y, z)=\frac{2 x}{(y+1) z} . F(1,0,3)=\frac{2}{(1)(3)}=\frac{2}{3}$.
12. $f(x, y)=x^{2} y-3 y^{3}$. $f(r+t, r)=(r+t)^{2} r-3 r^{3}=r^{3}+2 r^{2} t+t^{2} r-3 r^{3}=r\left(t^{2}+2 r t-2 r^{2}\right)$.
14. The probability that, out of a total of four children, exactly three will be blue-eyed is

$$
P(3,4)=\frac{4!\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4-3}}{3!(4-3)!}=\frac{4!\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)}{3!1!}=\frac{3}{64} .
$$

16. A plane parallel to the $y z$-plane has the form $x=c$, where c is a constant. Since $(-2,0,0)$ is a point on this plane, the equation is $x=-2$.
17. A plane parallel to the $y z-$ plane has the form $x=c$, where c is a constant. Since $(96,-2,2)$ is a point on this plane, the equation is $x=96$.

18*. A plane parallel to the $y z$-plane has the form $x=c$, where c is a constant. Since $(-4,-2,7)$ is a point on this plane, the equation is $x=-4$.
20. The surface $2 x+y+2 z=6$ is a plane because its equation can be rewritten $2 x+y+2 z-6=0$, which is in the form of the equation of a plane $(A x+B y+C z+D=$ $0)$. The intercepts are $(3,0,0),(0,6,0)$ and $(0,0,3)$. The first quadrant part of the plane is illustrated on the right.

26. The surface $y=z^{2}$ has $y z$-trace $y=z^{2}$ and the section with any plane $x=a$ is also $y=z^{2}$. These are all parabolas. The surface is called a parabolic cylinder.

28. The surface $x^{2}+4 y^{2}=1$ has $x y-$ trace and section with any plane $z=c$ given by $x^{2}+4 y^{2}=1$, which are ellipses. The surface is called an ellipitical cylinder.

28^{*}. The surface $3 x^{2}+2 y^{2}=1$ has $x y-$ trace and section with any plane $z=c$ given by $3 x^{2}+2 y^{2}=1$, which are ellipses. The surface is called an ellipitical cylinder.

Section 17.1 (12ed. 17.2)

2. $f(x, y)=2 x^{2}+3 x y \quad f_{x}(x, y)=4 x+3 y \quad f_{y}(x, y)=3 x$
3. $f(x, y)=\ln 2 \quad f_{x}(x, y)=0 \quad f_{y}(x, y)=0$
4. $g(x, y)=\left(x^{2}+1\right)^{2}+\left(y^{3}-3\right)^{3}+5 x y^{3}-2 x^{2} y^{2}$ $g_{x}(x, y)=2\left(x^{2}+1\right)(2 x)+0+5(1) y^{3}-2(2 x) y^{2}=4 x\left(x^{2}+1\right)+5 y^{3}-4 x y^{2}$ $g_{y}(x, y)=0+3\left(y^{3}-3\right)^{2}\left(3 y^{2}\right)+5 x\left(3 y^{2}\right)-2 x^{2}(2 y)=9 y^{2}\left(y^{3}-3\right)^{2}+15 x y^{2}-4 x^{2} y$
$6^{*} . g(x, y)=(x+1)^{2}+(y-3)^{3}+5 x y^{3}-2 \quad g_{x}(x, y)=2(x+1)+5 y^{3} \quad g_{y}(x, y)=2(y-3)^{2}+15 x y^{2}$
5. $g(w, z)=\sqrt[3]{w^{2}+z^{2}}=\left(w^{2}+z^{2}\right)^{\frac{1}{3}}$
$g_{w}(w, z)=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-\frac{2}{3}}(2 w)=\frac{2 w}{3\left(w^{2}+z^{2}\right)^{\frac{2}{3}}}$

$$
g_{z}(w, z)=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-\frac{2}{3}}(2 z)=\frac{2 z}{3\left(w^{2}+z^{2}\right)^{\frac{2}{3}}}
$$

10. $h(u, v)=\frac{8 u v^{2}}{u^{2}+v^{2}} \quad h_{u}(u, v)=\frac{8 v^{2}\left(u^{2}+v^{2}\right)-8 u v^{2}(2 u)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{8 v^{2}\left(v^{2}-u^{2}\right)}{\left(u^{2}+v^{2}\right)^{2}}$

$$
h_{v}(u, v)=\frac{16 u v\left(u^{2}+v^{2}\right)-8 u v^{2}(2 v)}{\left(u^{2}+v^{2}\right)^{2}}=\frac{16 u^{3} v}{\left(u^{2}+v^{2}\right)^{2}}
$$

12. $Q(\ell, k)=2 \ell^{0.38} k^{1.79}-3 \ell^{1.03}+2 k^{0.13}$
$Q_{\ell}(\ell, k)=2(0.38) \ell^{-0.62} k^{1.79}-3(1.03) \ell^{0.03}=0.76 \ell^{-0.62} k^{1.79}-3.09 \ell^{0.03}$
$Q_{k}(\ell, k)=2 \ell^{0.38}(1.79) k^{0.79}+2(0.13) k^{-0.87}=3.58 \ell^{0.38} k^{0.79}+0.26 k^{-0.87}$
13. $z=\left(x^{3}+y^{3}\right) e^{x y+3 x+3 y}$
$z_{x}=\frac{\partial z}{\partial x}=\left(x^{3}+y^{3}\right)\left(e^{x y+3 x+3 y}(y+3)\right)+e^{x y+3 x+3 y}\left(3 x^{2}\right)=\left(3 x^{2}+\left(x^{3}+y^{3}\right)(y+3)\right) e^{x y+3 x+3 y}$
$z_{y}=\frac{\partial z}{\partial y}=\left(x^{3}+y^{3}\right)\left(e^{x y+3 x+3 y}(x+3)\right)+e^{x y+3 x+3 y}\left(3 y^{2}\right)=\left(3 y^{2}+\left(x^{3}+y^{3}\right)(x+3)\right) e^{x y+3 x+3 y}$
16*. $z=\left(x^{2}+y^{2}\right) e^{2 x+3 y+1} \quad z_{x}=\frac{\partial z}{\partial x}=2 x e^{2 x+3 y+1}+\left(x^{2}+y^{2}\right) e^{2 x+3 y+1}(2)=\left(2 x^{2}+2 y^{2}+2 x\right) e^{2 x+3 y+1}$
$z_{y}=\frac{\partial z}{\partial y}=2 y e^{2 x+3 y+1}+\left(x^{2}+y^{2}\right) e^{2 x+3 y+1}(3)=\left(3 x^{2}+3 y^{2}+2 y\right) e^{2 x+3 y+1}$
14. $f(r, s)=\sqrt{r s} e^{2+r}=(r s)^{\frac{1}{2}} e^{2+r} \quad f_{r}(r, s)=(r s)^{\frac{1}{2}} e^{2+r}+\frac{1}{2}(r s)^{\frac{-1}{2}}(s) e^{2+r}=\left(\sqrt{r s}+\frac{s}{2 \sqrt{r s}}\right) e^{2+r}$ $f_{s}(r, s)=\frac{1}{2}(r s)^{\frac{-1}{2}}(r) e^{2+r}=\frac{r e^{2+r}}{2 \sqrt{r s}}$
15. $f(r, s)=\left(5 r^{2}+3 s^{3}\right)(2 r-5 s) \quad f_{r}(r, s)=2\left(5 r^{2}+3 s^{3}\right)+10 r(2 r-5 s)$
$f_{s}(r, s)=-5\left(5 r^{2}+3 s^{3}\right)+9 s^{2}(2 r-5 s)$
16. $g(r, s, t, u)=r s \ln (t) e^{u} \quad g_{r}(r, s, t, u)=s \ln (t) e^{u} \quad g_{s}(r, s, t, u)=r \ln (t) e^{u}$
$g_{t}(r, s, t, u)=\frac{r s e^{u}}{t} \quad g_{u}(r, s, t, u)=r s \ln (t) e^{u}$
26*. $g(r, s, t, u)=r s \ln (2 t+5 u) \quad g_{r}(r, s, t, u)=s \ln (2 t+5 u) \quad g_{s}(r, s, t, u)=r \ln (2 t+5 u)$
$g_{t}(r, s, t, u)=\frac{2 r s}{2 t+5 u} \quad g_{u}(r, s, t, u)=\frac{5 r s}{2 t+5 u}$
17. $z=\sqrt{2 x^{3}+5 x y+2 y^{2}} \quad \frac{\partial z}{\partial x}=\left.\frac{6 x^{2}+5 y}{2 \sqrt{2 x^{3}+5 x y+2 y^{2}}} \quad \frac{\partial z}{\partial x}\right|_{\substack{x=0 \\ y=1}}=\frac{5}{2 \sqrt{2}}$.
18. $g(x, y, z)=\frac{3 x^{2} y^{2}+2 x y+x-y}{x y-y z+x z}$
$g_{y}(x, y, z)=\frac{(x y-y z+x z)\left(6 x^{2} y+2 x-1\right)-\left(3 x^{2} y^{2}+2 x y+x-y\right)(x-z)}{(x y-y z+x z)^{2}} \quad g_{y}(1,1,5)=27$.
19. We are given $u=f(t, r, z)=\frac{(1+r)^{1-z} \ln (1+r)}{(1+r)^{1-z}-t}$.

Now $\frac{\partial u}{\partial z}=\ln (1+r)\left[\frac{(1+r)^{1-z} \ln (1+r)(-1)\left((1+r)^{1-z}-t\right)+(1+r)^{1-z}(1+r)^{1-z} \ln (1+r)}{\left((1+r)^{1-z}-t\right)^{2}}\right]$
$=\ln ^{2}(1+r)(1+r)^{1-z}\left[\frac{-(1+r)^{1-z}+t+(1+r)^{1-z}}{\left((1+r)^{1-z}-t\right)^{2}}\right]$
$=\frac{t(1+r)^{1-z} \ln ^{2}(1+r)}{\left((1+r)^{1-z}-t\right)^{2}}$.
This is what was required.
38. We are given that $r_{L}=r+D \frac{\partial r}{\partial D}+\frac{\partial C}{\partial D}$ and that elasticity is $\eta=\frac{\frac{r}{D}}{\frac{\partial r}{\partial D}}$. If we rewrite the formula for elasticity as $\frac{\partial r}{\partial D}=\frac{r}{D \eta}$ and substitute into the formula for r_{L}, we have $r_{L}=r+D \frac{r}{D \eta}+\frac{\partial C}{\partial D}=$ $r\left(1+\frac{r}{\eta}\right)+\frac{\partial C}{\partial D}=r\left[\frac{1+\eta}{\eta}\right]+\frac{\partial C}{\partial D}$, as required.
\# 3.
(a) Since $\ln t$ is only defined for $t>0, f(x, y)=\ln (x+y-1)$ is only defined if $x+y-1>0$ or $y>1-x$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y>1-x\right\}$. This is the region of the plane above the line $y=1-x$, excluding the line.
(b) $f(x, y)=e^{3 x y}$ is defined for all pairs (x, y) of real numbers.
(c) Since \sqrt{t} is only defined for $t \geq 0, f(x, y)=\sqrt{x+y}$ is defined for $y \geq-x$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq-x\right\}$. This is the region of the plane above the line $y=-x$, including the line.
(d) Since $\ln t$ is only defined for $t>0, f(x, y)=\ln \left(9-x^{2}-9 y^{2}\right)$ is only define if $9-x^{2}-9 y^{2}>0$ or $x^{2}+9 y^{2}<9$. Hence the domain is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+9 y^{2}<9\right\}$. This is the region of the plane inside the ellipse $x^{2}+9 y^{2}=9$, but excluding the ellipse.
(e) Since the domain of $\sqrt{1-x^{2}}$ is $-1<x<1$ and the domain of $\sqrt{1-y^{2}}$ is $-1<y<1$, the domain of $f(x, y)=\sqrt{1-x^{2}}-$ $\sqrt{1-y^{2}}$ is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}$. This is the part of the plane inside the square $[-1,1] \times[-1,1]$, but excluding the boundary lines.
(f) We first note that $\sqrt{y-x^{2}}$ is only defined if $y-x^{2} \geq 0$ or $y \geq x^{2}$ - the region of the plane above the graph of $y=x^{2}$, including the curve $y=x^{2}$. Also $\frac{1}{1-x^{2}}$ is only define if $1-x^{2} \neq 0$ or $x \neq \pm 1$. hence the domain of $f(x, y)=\frac{\sqrt{y-x^{2}}}{1-x^{2}}$ is $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x^{2}, x \neq \pm 1\right\}$. This is the region of the plane above the graph of $y=x^{2}$, including the curve $y=x^{2}$, but excluding the lines $x=-1$ and $x=1$.

(a) The level curves are parallel lines. The graph of the function is a plane with $x y$-trace $y=-x$.

(b) The level curves are circles of radius \sqrt{c} at the origin. Since $x^{2}+y^{2}$ can never be negative, we can not draw level curves for $c=-2$ and $c=-1$. When $c=0$, the level curve is only a point. The graph of the function is a paraboloid (bowl) opening upward with vertex at the origin.
(c) The level curve for each $c, c \neq 0$ is a pair of hyperbolas in opposite quadrants of the plane. When $c=0$, we get the $x-$ axis and the y - axis. The graph of the function is saddle shaped.

(d) The level curves are parabolas. The graph of the function has $x y-$ trace the parabola $y=x^{2}$. Hence it is a parabolic cylinder.
(e) The level curves are ellipses centered at the origin. Since $x^{2}+2 y^{2}$ can never be negative, we can not draw level curves for $c=-2$ and $c=-1$. When $c=0$, the level curve is only a point. The graph of the function is an ellipitical paraboloid opening upward with vertex at the origin.

[^0]
[^0]: * question taken from the $12^{\text {th }}$ edition of the text.

