University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT A33H

Winter 2011

Reversing the Order of Integration

Let z = f(x, y) and let B be a subset of the xy-plane. The volume of the figure lying below the graph of f(x, y) and over the set B is denoted $\int_B f(x, y) dA$. To compute it requires a double integral. If B is the region between the curves y = g(x) (below) and y = h(x) (above) for x between a and b, then $\int_B f(x, y) dA = \int_a^b \int_{g(x)}^{h(x)} f(x, y) dy dx$. Note that the limits of integration depend only the region B and are independent of the function z = f(x, y) being integrated. Since the preceding discussion is symmetrical with respect to x and y, we can reverse the roles of x and y if convenient. That is, if B is written instead as the region bounded by the curves x = p(y) (on the left) and x = q(y) (on the right) for y between c and d then $\int_B f(x, y) dA$ is also given by $\int_B f(x, y) dA = \int_c^d \int_{p(y)}^{q(y)} f(x, y) dx dy$.

Example. Let $f(x,y) = xy + y^2$ and let B be the region between the curves y = x and $y = x^2$. Compute $\int_{B} f(x,y) dA$.

Solution 1.

The curves y = x and $y = x^2$ intersect at x = 0 and x = 1. For x between 0 and 1, $x^2 \le x$. Therefore B is the region between $y = x^2$ (below) and y = x (above) for x between 0 and 1. Therefore

$$\begin{split} \int_{B} f(x,y) \, dA &= \int_{0}^{1} \int_{x^{2}}^{x} (xy+y^{2}) \, dy \, dx = \int_{0}^{1} \left[\frac{xy^{2}}{2} + \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=x} \, dx \\ &= \int_{0}^{1} \left(\frac{x^{3}}{2} + \frac{x^{3}}{3} - \frac{x^{5}}{2} - \frac{x^{6}}{3} \right) \, dx = \int_{0}^{1} \left(\frac{5x^{3}}{6} - \frac{x^{5}}{2} - \frac{x^{6}}{3} \right) \, dx \\ &= \left[\frac{5x^{4}}{24} - \frac{x^{6}}{12} - \frac{x^{7}}{21} \right]_{0}^{1} = \frac{5}{24} - \frac{1}{12} - \frac{1}{21} = \frac{13}{168} \end{split}$$

Solution 2.

Solving for the curves for x in terms of y gives x = y and $x = \sqrt{y}$ respectively. The curves x = y and $x = \sqrt{y}$ intersect at y = 0 and y = 1. For y between 0 and 1, $y \le \sqrt{y}$. Therefore

$$\begin{aligned} \int_{B} f(x,y) \, dA &= \int_{0}^{1} \int_{y}^{\sqrt{y}} (xy+y^{2}) \, dx \, dy = \int_{0}^{1} \left[\frac{x^{2}y}{2} + xy^{2} \right]_{x=y}^{x=\sqrt{y}} \, dy \\ &= \int_{0}^{1} \left(\frac{y^{2}}{2} + y^{5/2} - \frac{y^{3}}{2} - y^{3} \right) \, dy = \int_{0}^{1} \left(\frac{y^{2}}{2} + y^{5/2} - \frac{3}{2}y^{3} \right) \, dy \\ &= \left[\frac{y^{3}}{6} - \frac{2y^{7/2}}{7} - \frac{3}{6}y^{4} \right]_{0}^{1} = \frac{1}{6} - \frac{2}{7} - \frac{3}{8} = \frac{13}{168} \end{aligned}$$

as before. Note that the fact that the outer limits came out to be 0 and 1 after reversing the order, just as they were before, is a coincidence: the curves meet at the points (0,0) and (1,1) which happen to have the same x and y coordinates.

Example. Write $\int_0^2 \int_1^{e^x} f(x, y) \, dy \, dx$ with the order of integration reversed.

Solution. First sketch the region *B* described by the limits. *B* is bounded by y = 1 (below) and $y = e^x$ above, between x = 0 and 2, so it is the somewhat triangular-shaped region pictured below.

Solving $y = e^x$ for x gives $x = \ln y$. From the picture, we see that B can also be described as the region bounded by the curve $x = \ln y$ (on left) and x = 2 (on the right) for y between 1 and e^2 . Therefore

$$\int_0^2 \int_1^{e^x} f(x,y) \, dy \, dx = \int_1^{e^x} \int_{\ln y}^2 f(x,y) \, dx \, dy.$$

Sometimes reversing the order of integration, requires writing the region B as a union of regions.

Example. Write $\int_0^3 \int_0^{e^x} f(x, y) \, dy \, dx$ with the order of integration reversed.

Solution. Sketch the region B described by the limits:

We see that B is the union of the rectangle $[0,3] \times [0,1]$ and the somewhat triangular-shaped region above y = 1. Therefore the integral over B is the sum of two pieces so we get

$$\int_0^3 \int_0^{e^x} f(x,y) \, dy \, dx = \int_0^1 \int_0^3 f(x,y) \, dx \, dy + \int_1^{e^3} \int_{\ln y}^3 f(x,y) \, dx \, dy.$$

Now that we know that we **can** write an integral with the order of integration reversed, we can ask why we might **want** to reverse the order of integration. Consider the following example.

Example. Compute
$$\int_0^2 \int_x^2 e^{y^2} dy dx$$

Solution. If we try to do the integral directly, we run into the problem that there is no elementary function whose derivative is e^{y^2} , so we cannot do the first integral. If we reverse the order of integration and integrate over x first, perhaps things will look different by the time we come to integrate over y.

The limits of integration describe the triangle bounded by y = x (below) and y = 2 (above) for x between 0 and 2.

