University of Toronto Scarborough Department of Computer \& Mathematical Sciences

MAT A33H
Winter 2011

Reversing the Order of Integration

Let $z=f(x, y)$ and let B be a subset of the $x y$-plane. The volume of the figure lying below the graph of $f(x, y)$ and over the set B is denoted $\int_{B} f(x, y) d A$. To compute it requires a double integral. If B is the region between the curves $y=g(x)$ (below) and $y=h(x)$ (above) for x between a and b, then $\int_{B} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x$. Note that the limits of integration depend only the region B and are independent of the function $z=f(x, y)$ being integrated. Since the preceding discussion is symmetrical with respect to x and y, we can reverse the roles of x and y if convenient. That is, if B is written instead as the region bounded by the curves $x=p(y)$ (on the left) and $x=q(y)$ (on the right) for y between c and d then $\int_{B} f(x, y) d A$ is also given by $\int_{B} f(x, y) d A=\int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) d x d y$.

Example. Let $f(x, y)=x y+y^{2}$ and let B be the region between the curves $y=x$ and $y=x^{2}$. Compute $\int_{B} f(x, y) d A$.

Solution 1.

The curves $y=x$ and $y=x^{2}$ intersect at $x=0$ and $x=1$. For x between 0 and $1, x^{2} \leq x$. Therefore B is the region between $y=x^{2}$ (below) and $y=x$ (above) for x between 0 and 1 . Therefore

$$
\begin{aligned}
\int_{B} f(x, y) d A & =\int_{0}^{1} \int_{x^{2}}^{x}\left(x y+y^{2}\right) d y d x=\int_{0}^{1}\left[\frac{x y^{2}}{2}+\frac{y^{3}}{3}\right]_{y=x^{2}}^{y=x} d x \\
& =\int_{0}^{1}\left(\frac{x^{3}}{2}+\frac{x^{3}}{3}-\frac{x^{5}}{2}-\frac{x^{6}}{3}\right) d x=\int_{0}^{1}\left(\frac{5 x^{3}}{6}-\frac{x^{5}}{2}-\frac{x^{6}}{3}\right) d x \\
& =\left[\frac{5 x^{4}}{24}-\frac{x^{6}}{12}-\frac{x^{7}}{21}\right]_{0}^{1}=\frac{5}{24}-\frac{1}{12}-\frac{1}{21}=\frac{13}{168}
\end{aligned}
$$

Solution 2.

Solving for the curves for x in terms of y gives $x=y$ and $x=\sqrt{y}$ respectively. The curves $x=y$ and $x=\sqrt{y}$ intersect at $y=0$ and $y=1$. For y between 0 and $1, y \leq \sqrt{y}$. Therefore

$$
\begin{aligned}
\int_{B} f(x, y) d A & =\int_{0}^{1} \int_{y}^{\sqrt{y}}\left(x y+y^{2}\right) d x d y=\int_{0}^{1}\left[\frac{x^{2} y}{2}+x y^{2}\right]_{x=y}^{x=\sqrt{y}} d y \\
& =\int_{0}^{1}\left(\frac{y^{2}}{2}+y^{5 / 2}-\frac{y^{3}}{2}-y^{3}\right) d y=\int_{0}^{1}\left(\frac{y^{2}}{2}+y^{5 / 2}-\frac{3}{2} y^{3}\right) d y \\
& =\left[\frac{y^{3}}{6}-\frac{2 y^{7 / 2}}{7}-\frac{3}{6} y^{4}\right]_{0}^{1}=\frac{1}{6}-\frac{2}{7}-\frac{3}{8}=\frac{13}{168}
\end{aligned}
$$

as before. Note that the fact that the outer limits came out to be 0 and 1 after reversing the order, just as they were before, is a coincidence: the curves meet at the points $(0,0)$ and $(1,1)$ which happen to have the same x and y coordinates.

Example. Write $\int_{0}^{2} \int_{1}^{e^{x}} f(x, y) d y d x$ with the order of integration reversed.

Solution. First sketch the region B described by the limits. B is bounded by $y=1$ (below) and $y=e^{x}$ above, between $x=0$ and 2 , so it is the somewhat triangular-shaped region pictured below.

Solving $y=e^{x}$ for x gives $x=\ln y$. From the picture, we see that B can also be described as the region bounded by the curve $x=\ln y$ (on left) and $x=2$ (on the right) for y between 1 and e^{2}. Therefore

$$
\int_{0}^{2} \int_{1}^{e^{x}} f(x, y) d y d x=\int_{1}^{e^{2}} \int_{\ln y}^{2} f(x, y) d x d y
$$

Sometimes reversing the order of integration, requires writing the region B as a union of regions.

Example. Write $\int_{0}^{3} \int_{0}^{e^{x}} f(x, y) d y d x$ with the order of integration reversed.

Solution. Sketch the region B described by the limits:

We see that B is the union of the rectangle $[0,3] \times[0,1]$ and the somewhat triangular-shaped region above $y=1$. Therefore the integral over B is the sum of two pieces so we get

$$
\int_{0}^{3} \int_{0}^{e^{x}} f(x, y) d y d x=\int_{0}^{1} \int_{0}^{3} f(x, y) d x d y+\int_{1}^{e^{3}} \int_{\ln y}^{3} f(x, y) d x d y
$$

Now that we know that we can write an integral with the order of integration reversed, we can ask why we might want to reverse the order of integration. Consider the following example.

Example. Compute $\int_{0}^{2} \int_{x}^{2} e^{y^{2}} d y d x$

Solution. If we try to do the integral directly, we run into the problem that there is no elementary function whose derivative is $e^{y^{2}}$, so we cannot do the first integral. If we reverse the order of integration and integrate over x first, perhaps things will look different by the time we come to integrate over y.

The limits of integration describe the triangle bounded by $y=x$ (below) and $y=2$ (above) for x between 0 and 2.

$$
\int_{0}^{2} \int_{x}^{2} e^{y^{2}} d y d x=\int_{0}^{2} \int_{0}^{y} e^{y^{2}} d x d y=\int_{0}^{2}\left[x e^{y^{2}}\right]_{x=0}^{x=y} d y=\int_{0}^{2} y e^{y^{2}} d y=\left.\frac{1}{2} e^{y^{2}}\right|_{0} ^{2}=\frac{1}{2}\left(e^{4}-1\right)
$$

