Vertical cross sections Let D be the region bounded below by
$y=g_{1}(x)$, above by $y=g_{2}(x)$ and on the sides by $x=a$ and $x=b$. Then D can be described by

$$
\begin{gathered}
g_{1}(x) \leq y \leq g_{2}(x) \\
a \leq x \leq b
\end{gathered}
$$

To integrate $f(x, y)$ over D, we have

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Horizontal cross sections Let D be the region bounded on the left
by $x=h_{1}(y)$, on the right by $x=h_{2}(y)$ and between the lines $y=c$
and $y=d$. Then D can be described by

$$
\begin{gathered}
h_{1}(y) \leq x \leq h_{2}(y) \\
c \leq y \leq d
\end{gathered}
$$

To integrate $f(x, y)$ over D we have

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y .
$$

Let $z=f(x, y)$ and let D be a subset of the $x y$-plane. The signed volume of the 3-dimensional region between D and the graph of f is called

$$
\iint_{D} f(x, y) d A
$$

D can be almost any kind of a shape.
$\underline{\text { Volume as a double integral: If } f(x, y) \text { is continuous and } f(x, y) \geq 0}$ on the region D, then the solid region under the surface $z=f(x, y)$ over D has volume given by

$$
V=\iint_{D} f(x, y) d A .
$$

As a special case, when $f(x, y)$ is the constant function $f(x, y)=1$, we have:

Area formula: The area of a region D in the $x y$-plane is given by the formula

$$
\text { area of } D=A(D)=\iint_{D} 1 d A \text {. }
$$

Average Value formula: The average value of the function $f(x, y)$ over the region D is given by the formula

$$
\text { Average Value }=\frac{1}{A(D)} \iint_{D} f(x, y) d A .
$$

Example In a certain factory, output is given by the Cobb-Douglas production function

$$
Q(K, L)=50 K^{\frac{3}{5}} L^{\frac{2}{5}}
$$

where K is the capital investment in units of $\$ 1,000$ and L is the size of the labour force in worker-hours. Suppose that monthly capital investment varies between $\$ 10,000$ and $\$ 12,000$, while monthly use of labour varies between 2,800 and 3,200 worker-hours. Find the average monthly output for the factory.

