A monopoly has two products, x and y, with demand functions

$$
\begin{aligned}
& x=72-\frac{1}{2} P_{x} \\
& y=120-P_{y}
\end{aligned}
$$

where all prices are in hundreds of dollars. The total cost function is

$$
C=C(x, y)=x^{2}+x y+y^{2}+35
$$

and the maximum daily output is 40 units.
Find the maximizing level of output, prices and profit.

Rewriting the demand functions we have

$$
\begin{aligned}
& P_{x}=144-2 x \\
& P_{y}=120-y
\end{aligned}
$$

and the profit is $\Pi=x P_{x}+y P_{y}-C$

$$
\begin{aligned}
& =x(144-2 x)+y(120-y)-\left(x^{2}+x y+y^{2}+35\right) \\
& =144 x-3 x^{2}-x y-2 y^{2}+120 y-35 .
\end{aligned}
$$

We want to maximize Π subject to the constraint $x+y=40$. To do this we
define $F(x, y, \lambda)=144 x-3 x^{2}-x y-2 y^{2}+120 y-35-\lambda(x+y-40)$.
Now $F_{x}=144-6 x-y-\lambda=0$

$$
\begin{aligned}
& F_{y}=-x-4 y+120-\lambda=0 \\
& F_{\lambda}=-(x+y-40)=0
\end{aligned}
$$

Subtracting the second from the first we have $24-5 x+3 y=0 \Longrightarrow y=$ $\frac{-24+5 x}{3}$. Substituting into the third we have $x+\frac{24-5 x}{3}=40 \Longrightarrow$ $3 x-24+5 x=120 \Longrightarrow 8 x=144 \Longrightarrow x=18 \Longrightarrow y=\frac{1}{3}(-24+90)=22$.

Hence $P_{x}=144-2(18)=108, P_{y}=120-22=98$ and $\Pi=144(18)-$ $3(18)^{2}-(18)(22)-2(22)^{2}+120(22)-35=2861$ all in hundreds of dollars.

