The method of Lagrange multipliers is not restricted to a single constraint.

If $f(x, y, z)$ were subject to 2 constraints, $g_{1}(x, y, z)=0$ and $g_{2}(x, y, z)=$ 0 , we use 2 lambdas, λ_{1} and λ_{2}, and define the Lagrangian by

$$
F\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=f(x, y, z)-\lambda_{1} g_{1}(x, y, z)-\lambda_{2} g_{2}(x, y, z)
$$

If we solve $F_{x}=F_{y}=F_{z}=F_{\lambda_{1}}=F_{\lambda_{2}}=0$, the critical points of F
will give the (constrained) critical points of f.

A manufacturer has $\$ 600,000$ to spend on the production of a certain product. If x units of capital and y units of labour are allocated, the number of units produced is given by $p=p(x, y)=120 x^{4 / 5} y^{1 / 5}$ If labour costs $\$ 5000$ per unit and capital costs $\$ 3000$ per unit, how many units of labour and capital are needed to maximize production ? What is the maximum production?

The total cost of resources is $3000 x+5000 y$ is restricted by the resources available, $\$ 600,000$. Hence we want to maximize $p(x, y)=$ $120 x^{4 / 5} y^{1 / 5}$ subject to the constraint $g(x, y)=3000 x+5000 y-$ $600,000=0$. To solve we will use Lagrange multipliers. Defining the Lagrangian, we have

$$
\begin{aligned}
F(x, y, \lambda) & =p(x, y)-\lambda g(x, y) \\
& =120 x^{4 / 5} y^{1 / 5}-\lambda(3000 x+5000 y-600,000)
\end{aligned}
$$

Now $F_{x}=120\left(\frac{4}{5}\right) x^{-1 / 5} y^{1 / 5}-3000 \lambda=96 x^{-1 / 5} y^{1 / 5}-3000 \lambda=0$

$$
\begin{aligned}
& F_{y}=120\left(\frac{1}{5}\right) x^{4 / 5} y^{-4 / 5}-5000 \lambda=24 x^{4 / 5} y^{-4 / 5}-5000 \lambda=0 \\
& F_{\lambda}=-(3000 x+5000 y-600,000)=0
\end{aligned}
$$

We note that the third can be rewritten as $3 x+5 y-600=0$.

Solving the first and second for λ we have

$$
\lambda=\frac{96}{3000} x^{-1 / 5} y^{1 / 5}=0.032 x^{-1 / 5} y^{1 / 5}
$$

and

$$
\lambda=\frac{24}{5000} x^{4 / 5} y^{-4 / 5}=0.0048 x^{4 / 5} y^{-4 / 5}
$$

Equating and multiplying by $x^{1 / 5} y^{4 / 5}$ we get

$$
0.032 y=0.0048 x \Longrightarrow y=0.15 x
$$

Then substituting into the third we have

$$
3 x+5(0.15 x)=600 \text { or } 3.75 x=600 \Longrightarrow x=160
$$

Hence $y=(0.15) 160=24$.

There 160 units of capital and 24 units of labour needed for a maximum production of $p(160,24) \approx 13,138$ units.

Suppose M is the maximum or minimum value of $f(x, y)$ subject to the constraint $g(x, y)=c$. The Lagrange multiplier λ is the rate of change of M with respect to $c, \lambda=\frac{d M}{d c}$.

Here $\lambda \approx$ change in M resulting from a 1 -unit increase in c.

Note: A problem where production is maximized subject to a cost constraint is called a fixed budget problem. In the context of such a problem, the Lagrange multiplier λ is called the marginal productivity of money.
(In an utility problem, the λ is called the marginal utility of money.)

Now suppose the manufacturer in the previous problem is given an extra $\$ 1000$ to spend on resources; i.e. $\$ 601,000$. Estimate the effect on the maximum production level.

Recall that $\lambda=0.032 x^{-1 / 5} y^{1 / 5}=0.032(160)^{-1 / 5}(24)^{1 / 5} \approx 0.0219 \Longrightarrow$ an increase in production of approximately 0.0219 units for each $\$ 1$ increase in the constraint. Here an extra $\$ 1000$ was available so production would increase by approximately $(0.0219)(1000)=21.9$ units giving a new production of approximately $13,138+21.9=$ 13, 159.9 units.

If we simply redid the calculations, we would get $x=160.27, y=$ 24.04 and $p \approx 13,159.82$, which is essentially the same as the estimate.

