We now detail how the second derivative test works in the case of 3 variables.

Let $w=f(x, y, z)$ have continuous second partial derivatives near a critical point (a, b, c).

The Hessian matrix is

$$
A=H f(a, b, c)=\left[\begin{array}{ccc}
f_{x x}(a, b, c) & f_{x y}(a, b, c) & f_{x z}(a, b, c) \\
f_{x y}(a, b, c) & f_{y y}(a, b, c) & f_{y z}(a, b, c) \\
f_{x z}(a, b, c) & f_{y z}(a, b, c) & f_{z z}(a, b, c)
\end{array}\right]
$$

We first compute $\operatorname{det} A=\operatorname{det}(H f)$. If $\operatorname{det} A \neq 0$, we can proceed.

If $\operatorname{det} A_{1}=\operatorname{det}\left[f_{x x}(a, b, c)\right]>0$
$\operatorname{det} A_{2}=\operatorname{det}\left[\begin{array}{ll}f_{x x}(a, b, c) & f_{x y}(a, b, c) \\ f_{x y}(a, b, c) & f_{y y}(a, b, c)\end{array}\right]>0$
$\operatorname{det} A_{3}=\operatorname{det} A>0$
we have the sequence +++ which indicates a relative minimum.

If $\operatorname{det} A_{1}=\operatorname{det}\left[f_{x x}(a, b, c)\right]<0$
$\operatorname{det} A_{2}=\operatorname{det}\left[\begin{array}{cc}f_{x x}(a, b, c) & f_{x y}(a, b, c) \\ f_{x y}(a, b, c) & f_{y y}(a, b, c)\end{array}\right]>0$
$\operatorname{det} A_{3}=\operatorname{det} A<0$
we have the sequence -+- which indicates a relative maximum.

If we have any other sequence, the critical point is neither a minimum nor a maximum.

If $\operatorname{det} A=0$, we have the degenerate case and we can not determine if the critical point is a maximum, a minimum or neither from the second derivative test.

Suppose we have a function $f(x, y, z)$ subject to the constraint $g(x, y, z)=0$. We define a new function F of 4 variables by

$$
F(x, y, z, \lambda)=f(x, y, z)-\lambda(g(x, y, z))
$$

If $\left(a, b, c, \lambda_{0}\right)$ is a critical point of F, then (a, b, c) is a critical point of f subject to the constraint $g(x, y, z)=0$.

The λ is called a Lagrange multiplier and the new function F we defined is called the Lagrangian or the Lagrange function.

This approach to solving for (constrained) critical points is called the method of Lagrange multipliers.
(Although stated for 3 variables, this approach can easily be adapted
for $2,4,5$ or more variables.)

Suppose we have a function $f(x, y, z)$ subject to the constraint $g(x, y, z)=0$. We define a new function \boldsymbol{F} of 4 variables by

$$
\boldsymbol{F}(x, y, z, \lambda)=f(x, y, z)-\lambda(g(x, y, z))
$$

If $\left(a, b, c, \lambda_{0}\right)$ is a critical point of \boldsymbol{F}, then (a, b, c) is a critical point of f subject to the constraint $g(x, y, z)=0$.

Find the constrained critical points of

$$
f(x, y, z)=(x-3)^{2}+(y-1)^{2}+(z+1)^{2}
$$

subject to the constraint

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}-4=0
$$

We define the Lagrangian

$$
\begin{aligned}
\boldsymbol{F}(x, y, z, \lambda) & =f(x, y, z)-\lambda g(x, y, z) \\
& =(x-3)^{2}+(y-1)^{2}+(z+1)^{2}-\lambda\left(x^{2}+y^{2}+z^{2}-4\right)
\end{aligned}
$$

and calculate the partials and equate to 0 :

$$
\begin{aligned}
& F_{x}=2(x-3)-2 \lambda x=0 \\
& F_{y}=2(y-1)-2 \lambda y=0 \\
& F_{z}=2(z+1)-2 \lambda z=0 \\
& F_{\lambda}=-\left(x^{2}+y^{2}+z^{2}-4\right)=0
\end{aligned}
$$

We will solve the first 3 in terms of λ and then substitute into the $4^{t h}$.

From the first: $x-3=\lambda x \Longrightarrow x(1-\lambda)=3 \Longrightarrow x=\frac{3}{1-\lambda}$
We note that $1-\lambda \neq 0$ because, if $\lambda=1$, we would have $2 x-6-2 x=$ $0 \Longrightarrow-6=0$ which is impossible.

From the second: $y-1=\lambda y \Longrightarrow y(1-\lambda)=1 \Longrightarrow y=\frac{1}{1-\lambda}$
From the third: $z+1=\lambda z \Longrightarrow z(1-\lambda)=-1 \Longrightarrow z=\frac{-1}{1-\lambda}$. Now the fourth becomes $\frac{3^{2}}{(1-\lambda)^{2}}+\frac{1^{2}}{(1-\lambda)^{2}}+\frac{(-1)^{2}}{(1-\lambda)^{2}}=4 \Longrightarrow$ $\frac{11}{(1-\lambda)^{2}}=4 \Longrightarrow(1-\lambda)^{2}=\frac{11}{4} \Longrightarrow 1-\lambda= \pm \frac{\sqrt{11}}{2} \Longrightarrow \lambda=$ $1 \pm \frac{\sqrt{11}}{2}$

$$
\begin{array}{r}
\text { Hence } x=\frac{3}{1-\left(1 \pm \frac{\sqrt{11}}{2}\right)}= \pm \frac{6}{\sqrt{11}} \\
y=\frac{1}{1-\left(1 \pm \frac{\sqrt{11}}{2}\right)}= \pm \frac{2}{\sqrt{11}} \\
z=\frac{-1}{1-\left(1 \pm \frac{\sqrt{11}}{2}\right)}=\mp \frac{2}{\sqrt{11}} .
\end{array}
$$

We have 2 (constrainted) critical points

$$
\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, \frac{-2}{\sqrt{11}}\right) \text { and }\left(\frac{-6}{\sqrt{11}}, \frac{-2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)
$$

