A Chain Rule: Let $z=f(x, y)$, where both $x$ and $y$ are functions of $s$ and $t$ given by $x=x(s, t)$ and $y=y(s, t)$. If $f, x$, and $y$ all have continuous partial derivatives, then $z$ is a function of $s$ and $t$, and

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

The number of intermediate variables of $z$ (two here) is the same as the number of terms that compose $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Another chain rule: Suppose $z=f(w, x, y)$ and $w, x$ and $y$ are all functions of $p, q, r, s$, and $t$. Then, as long as all partials are continuous, $z$ can be considered a function of $p, q, r, s$, and $t$, and we have

$$
\begin{aligned}
& \frac{\partial z}{\partial p}=\frac{\partial z}{\partial w} \frac{\partial w}{\partial p}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial p}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial p} \\
& \frac{\partial z}{\partial q}=\frac{\partial z}{\partial w} \frac{\partial w}{\partial q}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial q}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial q} \\
& \frac{\partial z}{\partial r}=\frac{\partial z}{\partial w} \frac{\partial w}{\partial r}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial w} \frac{\partial w}{\partial s}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial w} \frac{\partial w}{\partial t}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

The number of intermediate variables of $z$ (three) is the same as the number of terms that form each of $\frac{\partial z}{\partial p}, \frac{\partial z}{\partial q}, \frac{\partial z}{\partial r}, \frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
$\underline{\text { Another possibility : }}$ Suppose $w=f(x, y, z)$ is such that $x=x(t)$, $y=y(t)$ and $z=z(t)$. Then, as long as all derivatives are continuous, $w$ can be considered a function of 1-variable, $t$, and

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

Since $w$ can be expressed as a function of 1 -variable, we use $\frac{d w}{d t}$ rather than $\frac{\partial w}{\partial t}$. Likewise we use $\frac{d x}{d t}, \frac{d y}{d t}$ and $\frac{d z}{d t}$.

In general, if $z=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and each of $x_{1}, x_{2}, \cdots, x_{n}$ is a function of $u_{1}, u_{2}, \cdots, u_{k}$ we have

$$
\frac{\partial z}{\partial u_{j}}=\sum_{i=1}^{n} \frac{\partial z}{\partial x_{i}} \frac{\partial x_{i}}{\partial u_{j}},
$$

for $1 \leq j \leq k$.

Definition A function $z=f(x, y)$ is said to have a relative (or
local) maximum at the point $(a, b)$, if for all points $(x, y)$ in the plane that are sufficiently close to $(a, b)$, we have $f(a, b) \geq f(x, y)$.

A function $z=f(x, y)$ is said to have a relative (or local) minimum at the point $(a, b)$, if for all points $(x, y)$ in the plane that are sufficiently close to $(a, b)$, we have $f(a, b) \leq f(x, y)$.

Definition A function $w=f(x, y, z)$ is said to have a relative (or local) maximum at the point ( $a, b, c$ ), if for all points $(x, y, z)$
in space that are sufficiently close to $(a, b, c)$, we have $f(a, b, c) \geq$ $f(x, y, z)$.

A function $w=f(x, y, z)$ is said to have a relative (or local) minimum at the point $(a, b, c)$, if for all points $(x, y, z)$ in space that are sufficiently close to $(a, b, c)$, we have $f(a, b, c) \leq f(x, y, z)$.

A local (relative) maximum or minimum is called a local (or relative) extremum. (pl. extrema)

Rule 1: If $z=f(x, y)$ has a local (relative) maximum or minimum at $(a, b)$, and if both $f_{x}$ and $f_{y}$ are defined for all points close to $(a, b)$, it is necessary that $(a, b)$ be a solution to the system

$$
\begin{aligned}
& f_{x}(x, y)=0 \\
& f_{y}(x, y)=0
\end{aligned}
$$

There is also a version of Rule 1 in the case of 3 or more variables.

Definition A point $(a, b)$ for which $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ is called a critical point of $f$.

Definition A point $(a, b, c)$ for which $f_{x}(a, b, c)=0, f_{y}(a, b, c)=0$ and $f_{z}(a, b, c)=0$ is called a critical point of $f$.

$$
f(x, y)=\left(x^{2}+y^{2}\right)^{\frac{2}{3}}
$$



