<u>A Chain Rule</u>: Let z = f(x, y), where both x and y are functions of s and t given by x = x(s, t) and y = y(s, t). If f, x, and y all have continuous partial derivatives, then z is a function of s and t, and

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

The number of intermediate variables of z (two here) is the same as the number of terms that compose $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$. <u>Another chain rule</u>: Suppose z = f(w, x, y) and w, x and y are all functions of p, q, r, s, and t. Then, as long as all partials are continuous, z can be considered a function of p, q, r, s, and t, and we have

$$\frac{\partial z}{\partial p} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial p} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial p}$$
$$\frac{\partial z}{\partial q} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial q} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial q} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial q}$$
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial r} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial s} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial w} \frac{\partial w}{\partial t} + \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

The number of intermediate variables of z (three) is the same as the

number of terms that form each of $\frac{\partial z}{\partial p}$, $\frac{\partial z}{\partial q}$, $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Another possibility : Suppose w = f(x, y, z) is such that x = x(t), y = y(t) and z = z(t). Then, as long as all derivatives are continu-

ous, w can be considered a function of 1-variable, t, and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

Since w can be expressed as a function of 1-variable, we use $\frac{dw}{dt}$ rather than $\frac{\partial w}{\partial t}$. Likewise we use $\frac{dx}{dt}$, $\frac{dy}{dt}$ and $\frac{dz}{dt}$.

In general, if $z = f(x_1, x_2, \cdots, x_n)$ and each of x_1, x_2, \cdots, x_n is

a function of u_1, u_2, \cdots, u_k we have

$$\frac{\partial z}{\partial u_j} = \sum_{i=1}^n \frac{\partial z}{\partial x_i} \frac{\partial x_i}{\partial u_j},$$

for $1 \leq j \leq k$.

<u>Definition</u> A function z = f(x, y) is said to have a **relative** (or **local**) **maximum** at the point (a, b), if for all points (x, y) in the plane that are sufficiently close to (a, b), we have $f(a, b) \ge f(x, y)$.

A function z = f(x, y) is said to have a **relative** (or **local**) **minimum** at the point (a, b), if for all points (x, y) in the plane that are sufficiently close to (a, b), we have $f(a, b) \leq f(x, y)$. Definition A function w = f(x, y, z) is said to have a **relative**

<u>Definition</u> A function w = f(x, y, z) is said to have a **relative** (or **local**) **maximum** at the point (a, b, c), if for all points (x, y, z)in space that are sufficiently close to (a, b, c), we have $f(a, b, c) \ge$ f(x, y, z).

A function w = f(x, y, z) is said to have a **relative** (or **local**) **minimum** at the point (a, b, c), if for all points (x, y, z) in space that are sufficiently close to (a, b, c), we have $f(a, b, c) \leq f(x, y, z)$.

A local (relative) maximum or minimum is called a **local** (or **relative**) **extremum**. (pl. extrema)

<u>Rule 1:</u> If z = f(x, y) has a local (relative) maximum or minimum at (a, b), and if both f_x and f_y are defined for all points close to (a, b), it is necessary that (a, b) be a solution to the system

$$f_x(x,y) = 0$$
$$f_y(x,y) = 0$$

There is also a version of Rule 1 in the case of 3 or more variables. <u>Definition</u> A point (a, b) for which $f_x(a, b) = 0$ and $f_y(a, b) = 0$ is called a **critical point** of f.

<u>Definition</u> A point (a, b, c) for which $f_x(a, b, c) = 0$, $f_y(a, b, c) = 0$ and $f_z(a, b, c) = 0$ is called a **critical point** of f.

$$f(x,y) = \left(x^2 + y^2\right)^{\frac{2}{3}}$$

