Let f be a demand function for a product $A, q_{A}=f\left(p_{A}, p_{B}\right)$.
q_{A} depends on the per unit prices of both product A and product B.
Definition:
The partial elasticity of demand for A with respect to p_{A},
denoted $\eta_{p_{A}}$, is defined as

$$
\eta_{p_{A}}=\left(\frac{p_{A}}{q_{A}}\right)\left(\frac{\partial q_{A}}{\partial p_{A}}\right)
$$

The partial elasticity of demand for A with respect to p_{B},
denoted $\eta_{p_{B}}$, is defined as

$$
\eta_{p_{B}}=\left(\frac{p_{B}}{q_{A}}\right)\left(\frac{\partial q_{A}}{\partial p_{B}}\right)
$$

Let $z=f(x, y)$ be a function of 2 -variables. We note that the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ are also functions of 2-variables, so we can take the partial derivatives of these functions:

$$
\begin{array}{ll}
\left(f_{x}\right)_{x}(x, y) & \left(f_{x}\right)_{y}(x, y) \\
\left(f_{y}\right)_{x}(x, y) & \left(f_{y}\right)_{y}(x, y)
\end{array}
$$

These are called the second-order partial derivatives of f.
Notation: We write

$$
\begin{aligned}
& f_{x x} \text { for }\left(f_{x}\right)_{x} \\
& f_{x y} \text { for }\left(f_{x}\right)_{y} \\
& f_{y x} \text { for }\left(f_{y}\right)_{x} \\
& f_{y y} \text { for }\left(f_{y}\right)_{y}
\end{aligned}
$$

Since the second-order partials are also functions of 2 -variables, we can again take the partials:

$$
\begin{aligned}
& \left(f_{x x}\right)_{x}(x, y) \text { denoted } f_{x x x}(x, y) \\
& \left(f_{x x}\right)_{y}(x, y) \text { denoted } f_{x x y}(x, y) \\
& \left(f_{x y}\right)_{x}(x, y) \text { denoted } f_{x y x}(x, y)
\end{aligned}
$$

etc

These are called the third-order partial derivatives of f.
We can continue the process to get even higher order partial derivatives.

Using the alternate notation:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) & & =f_{x x} \\
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) & & =f_{x y} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) & & =f_{y x} \\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) & & =f_{y y}
\end{aligned}
$$

Going to the third partials:

$$
\begin{aligned}
\frac{\partial^{3} f}{\partial x^{3}} & =\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial x^{2}}\right) & & f_{x x x} \\
\frac{\partial^{3} f}{\partial y \partial x^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial x^{2}}\right) & & =f_{x x y} \\
\frac{\partial^{3} f}{\partial x^{2} \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial x \partial y}\right) & & =f_{y x x}
\end{aligned}
$$

Definition: The partial derivatives $f_{x y}$ and $f_{y x}$ are called mixed partial derivatives.

- If all $2^{\text {nd }}$ order partials are continuous, the mixed $2^{\text {nd }}$ order partials are equal.
(Clairaut's Theorem ??)
- If all $3^{\text {rd }}$ order partials are continuous, the mixed $3^{\text {rd }}$ order partials are equal.
- In general, if the $n^{\text {th }}$ order partials are continuous, the mixed $n^{\text {th }}$ order partials are equal.

