Let f be a demand function for a product A, $q_A = f(p_A, p_B)$.

 q_A depends on the per unit prices of both product A and product B.

Definition:

The **partial elasticity of demand for** A with respect to p_A , denoted η_{p_A} , is defined as

$$\eta_{p_A} = \left(\frac{p_A}{q_A}\right) \left(\frac{\partial q_A}{\partial p_A}\right)$$

The **partial elasticity of demand for** A with respect to p_B , denoted η_{p_B} , is defined as

$$\eta_{p_B} = \left(\frac{p_B}{q_A}\right) \left(\frac{\partial q_A}{\partial p_B}\right)$$

Let z = f(x, y) be a function of 2-variables. We note that the partial derivatives $f_x(x, y)$ and $f_y(x, y)$ are also functions of 2-variables, so we can take the partial derivatives of these functions:

$(f_x)_x(x,y)$	$(f_x)_y (x,y)$
$(f_y)_x \left(x,y ight)$	$(f_y)_y(x,y)$

These are called the **second-order partial derivatives of** f. <u>Notation:</u> We write

> f_{xx} for $(f_x)_x$ f_{xy} for $(f_x)_y$ f_{yx} for $(f_y)_x$ f_{yy} for $(f_y)_y$

Since the second-order partials are also functions of 2–variables, we can again take the partials:

$$(f_{xx})_x(x,y)$$
 denoted $f_{xxx}(x,y)$
 $(f_{xx})_y(x,y)$ denoted $f_{xxy}(x,y)$
 $(f_{xy})_x(x,y)$ denoted $f_{xyx}(x,y)$

 etc

These are called the **third-order partial derivatives of** f.

We can continue the process to get even higher order partial deriva-

tives.

Using the alternate notation:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

Going to the third partials:

$$\frac{\partial^3 f}{\partial x^3} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} \right)$$
$$\frac{\partial^3 f}{\partial y \,\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x^2} \right)$$
$$\frac{\partial^3 f}{\partial x^2 \,\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \,\partial y} \right)$$

 $= f_{xxx}$ $= f_{xxy}$ $= f_{yxx}$

 etc

<u>Definition</u>: The partial derivatives f_{xy} and f_{yx} are called **mixed** partial derivatives.

► If all 2nd order partials are continuous, the mixed 2nd order partials are equal.

(Clairaut's Theorem ??)

- ► If all 3rd order partials are continuous, the mixed 3rd order partials are equal.
- ▶ In general, if the n^{th} order partials are continuous, the mixed n^{th} order partials are equal.