Productivity
If $\mathcal{P}=f(\ell, k)$ gives the output \mathcal{P} when ℓ units of labour and k units of capital are used, then \mathcal{P} is called a production function.
$\frac{\partial \mathcal{P}}{\partial \ell}$ is defined to be the marginal productivity w.r.t. ℓ (labour).
(rate of change in \mathcal{P} w.r.t. ℓ when k is held fixed.)
$\frac{\partial \mathcal{P}}{\partial k}$ is defined to be the marginal productivity w.r.t. k (cap-
ital).
(rate of change in \mathcal{P} w.r.t. k when ℓ is held fixed.)

A Cobb-Douglas production function is a production func-
tion of the form

$$
\mathcal{P}=C \boldsymbol{\ell}^{\alpha} \boldsymbol{k}^{\beta}
$$

where C, α, β are constants with $\alpha+\beta=1$.

Let A and B be two products such that a change in price for one affects the demand for the other. Hence the demand for each depends
on the price of both. If q_{A}, q_{B} are the quantities demanded and p_{A},
p_{B} are the prices then

$$
\begin{aligned}
& q_{A}=f\left(p_{A}, p_{B}\right) \\
& q_{B}=g\left(p_{A}, p_{B}\right)
\end{aligned}
$$

If p_{A} increases with p_{B} fixed, then q_{A} decreases $\Longrightarrow \frac{\partial q_{A}}{\partial p_{A}}<0$.
If p_{B} increases with p_{A} fixed, then q_{B} decreases $\Longrightarrow \frac{\partial q_{B}}{\partial p_{B}}<0$.

Definition:
If $\frac{\partial q_{A}}{\partial p_{B}}>0$ and $\frac{\partial q_{B}}{\partial p_{A}}>0$, then A and B are said to be competitive products or substitutes.

If $\frac{\partial q_{A}}{\partial p_{B}}<0$ and $\frac{\partial q_{B}}{\partial p_{A}}<0$, then A and B are said to be complementary products.

