Productivity

If $\mathcal{P} = f(\ell, k)$ gives the output \mathcal{P} when ℓ units of labour and k units

of capital are used, then \mathcal{P} is called a **production function**.

 $\frac{\partial \mathcal{P}}{\partial \ell}$ is defined to be the marginal productivity w.r.t. ℓ (labour).

(rate of change in \mathcal{P} w.r.t. ℓ when k is held fixed.)

 $\frac{\partial \mathcal{P}}{\partial k}$ is defined to be the marginal productivity w.r.t. k (cap-

ital).

(rate of change in \mathcal{P} w.r.t. k when ℓ is held fixed.)

A Cobb-Douglas production function is a production func-

tion of the form

$$\mathcal{P} = C \, \boldsymbol{\ell}^{\alpha} \, \boldsymbol{k}^{\beta}$$

where C, α, β are constants with $\alpha + \beta = 1$.

Let A and B be two products such that a change in price for one affects the demand for the other. Hence the demand for each depends on the price of both. If q_A , q_B are the quantities demanded and p_A , p_B are the prices then

 $q_A = f(p_A, p_B)$ $q_B = g(p_A, p_B)$

If p_A increases with p_B fixed, then q_A decreases $\implies \frac{\partial q_A}{\partial p_A} < 0$. If p_B increases with p_A fixed, then q_B decreases $\implies \frac{\partial q_B}{\partial p_B} < 0$.

Definition:

If $\frac{\partial q_A}{\partial p_B} > 0$ and $\frac{\partial q_B}{\partial p_A} > 0$, then A and B are said to be **competi**-

tive products or substitutes.

If $\frac{\partial q_A}{\partial p_B} < 0$ and $\frac{\partial q_B}{\partial p_A} < 0$, then A and B are said to be **comple-**

mentary products.