Partial derivatives as a *rate of change*:

Let z = f(x, y) then $\frac{\partial z}{\partial x}$ is the rate of change of z w.r.t. x when y is held fixed. $\frac{\partial z}{\partial y}$ is the rate of change of z w.r.t. y when x is held fixed.

Marginal Cost

Suppose a manufacturer produces x units of product X and y units

of product Y. Then the total cost \mathcal{C} of these units, $\mathcal{C} = f(x, y)$ is

called a **joint cost function**.

 $\frac{\partial \mathcal{C}}{\partial x}$ is called the (partial) marginal cost with respect to x.

(rate of change in \mathcal{C} w.r.t. x when y is held fixed.)

 $\frac{\partial \mathcal{C}}{\partial y}$ is called the (partial) marginal cost with respect to y.

(rate of change in \mathcal{C} w.r.t. y when x is held fixed.)