The intersection of a surface with a coordinate plane is called a **trace**.

The intersection of a surface with a plane parallel to a coordinate plane is called a **section**.

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a scalar function of 2 variables. The **level curve** at height c of f is the curve in \mathbb{R}^2 defined by the equation f(x, y) = c, c a constant.

In set notation, $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}.$

In higher dimensions, level curves are called level sets.

<u>Definition</u> If z = f(x, y), the **partial derivative of** f with **respect to** x, denoted $f_x \left(\text{ or } \frac{\partial f}{\partial x} \right)$, is the function given by $f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$

provided the limit exists.

The **partial derivative of** f with respect to y, denoted f_y $\left(\text{ or } \frac{\partial f}{\partial y} \right)$, is the function given by

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

provided the limit exists.

Procedure to find $f_x(x, y)$ and $f_y(x, y)$

To find f_x treat y as a constant, and differentiate f with respect to x in the usual way.

To find f_y treat x as a constant, and differentiate f with respect to y in the usual way.