The intersection of a surface with a coordinate plane is called a trace.

The intersection of a surface with a plane parallel to a coordinate plane is called a section.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar function of 2 variables. The level curve at height c of f is the curve in \mathbb{R}^{2} defined by the equation $f(x, y)=c, c$ a constant.

In set notation, $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=c\right\}$.

In higher dimensions, level curves are called level sets.

Definition If $z=f(x, y)$, the partial derivative of f with respect to x, denoted $f_{x}\left(\right.$ or $\left.\frac{\partial f}{\partial x}\right)$, is the function given by

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

provided the limit exists.
The partial derivative of f with respect to y, denoted f_{y} (or $\frac{\partial f}{\partial y}$), is the function given by

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

provided the limit exists.
Procedure to find $f_{x}(x, y)$ and $f_{y}(x, y)$
To find f_{x} treat y as a constant, and differentiate f with respect to x in the usual way.

To find f_{y} treat x as a constant, and differentiate f with respect to y in the usual way.

