Let $A = [a_{ij}]$ be an $n \times n$ matrix. We define the **cofactor** of a_{ij} denoted c_{ij} by

$$c_{ij} = (-1)^{i+j} \det \tilde{A}_{ij}$$

The $n \times n$ matrix $C = [c_{ij}]$ is called the **cofactor matrix** of A.

(Recall that \tilde{A}_{ij} is the matrix obtained from A by deleting the i^{th} row and j^{th} column and is sometimes called the ij^{th} minor matrix of A. det \tilde{A}_{ij} can be called the ij^{th} minor of A or the minor of the element a_{ij} of A.)

In this context, a cofactor is sometimes called a signed minor.

<u>Note:</u> c_{ij} is a scalar (real number) but \tilde{A}_{ij} is an $(n-1) \times (n-1)$ matrix.

We can now restate the definition of determinant in terms of cofactors.

- (i) The determinant of a 1 by 1 matrix [a] is a.
- (ii) Suppose a definition is provided for a n-1 by n-1 determinant.

Define

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ & & & & \\ & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \sum_{j=1}^{n} a_{1j} c_{1j} = a_{11} c_{11} + a_{12} c_{12} + \cdots + a_{1n} c_{1n}$$

where c_{ij} is the cofactor of a_{ij} .

The transpose of the cofactor matrix C of A is called the **classical** adjoint of A and is denoted by $\operatorname{adj} A$; i.e., $\operatorname{adj} A = C^T$.

<u>Theorem:</u> If A is any square matrix, then

$$A(\operatorname{adj} A) = (\det A)I = (\operatorname{adj} A)A.$$

In particular, if det $A \neq 0$, the inverse of A is given by

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

where $\operatorname{adj} A = C^T$, C being the cofactor matrix of A.

We consider the linear system AX = B, where $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $B = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix}$. If det $A \neq 0$, we left multiply by $A^{-1} \text{ to obtain}$ $A^{-1} \text{ to obtain}$ $X = A^{-1}B = \left(\frac{1}{\det A} \operatorname{adj} A\right)B = \frac{1}{\det A} \begin{bmatrix} c_{11} \ c_{21} \ \cdots \ c_{n1} \\ c_{12} \ c_{22} \ \cdots \ c_{n2} \\ \cdots \ c_{1n} \ c_{2n} \ \cdots \ c_{nn} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix}$

and we have

$$x_{1} = \frac{1}{\det A} \begin{bmatrix} B_{1}c_{11} + B_{2}c_{21} + \cdots + B_{n}c_{n1} \end{bmatrix}$$
$$x_{2} = \frac{1}{\det A} \begin{bmatrix} B_{1}c_{12} + B_{2}c_{22} + \cdots + B_{n}c_{n2} \end{bmatrix}$$
...

$$x_n = \frac{1}{\det A} \left[B_1 c_{1n} + B_2 c_{2n} + \cdots + B_n c_{nn} \right].$$

If you look at the formula for x_1 , it looks like the formula for expansion along the first column of the determinant of a matrix. The cofactors involved are those corresponding to the first column of A.

If A_1 is obtained from A by replacing the first column of A by B, then $c_{i1}(A_1) = c_{i1}(A)$ for each i. Therefore, expanding det A_1 along the first column we have

$$\det A_1 = B_1 c_{11}(A_1) + \cdots + B_n c_{n1}(A_1)$$
$$= B_1 c_{11}(A) + \cdots + B_n c_{n1}(A)$$
$$= (\det A) x_1$$
$$\implies x_1 = \frac{\det A_1}{\det A}.$$

We get similar results for the other variables. This gives the theorem known as **Cramer's Rule**. <u>Cramer's Rule</u> If A is an invertible $n \times n$ matrix, the solution to the system

$$AX = B$$

of *n* equations in the variables x_1, x_2, \dots, x_n is given by

$$x_1 = \frac{\det A_1}{\det A}, \quad x_2 = \frac{\det A_2}{\det A}, \quad \cdots, \quad x_n = \frac{\det A_n}{\det A}$$

where, for each k, A_k is the matrix obtained from A by replacing the k^{th} column of A by B.