Definition: determinant

- (i) The determinant of a 1 by 1 matrix [a] is a.
- (ii) Suppose a definition is provided for a n-1 by n-1 determinant.

Define

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det \tilde{A}_{1j}$$

where \tilde{A}_{ij} is the matrix obtained from A by deleting the i^{th} row and j^{th} column.

notes:

The matrix \tilde{A}_{ij} is sometimes called the ij^{th} minor matrix of A. Think of this approach as the definition by expansion along the first row or expansion by minors along the first row.

Properties of Determinants

Let A be an $n \times n$ matrix.

▶ If A has a row or column of zeros, $\det A = 0$.

• If A is a triangular matrix, det A is the product of the elements on the main diagonal.

► det I = 1.

 $\blacktriangleright \det A = \det A^T.$

 ▲ ► Interchanging any two rows (or columns) multiplies the determinant by -1.

Since det $A = \det A^T$, the remaining properties will be stated only in terms of rows.

▲ ► If a row of A is multiplied by a constant k, the determinant of the resulting matrix is $k \det A$.

▶ NOTE,
$$det(k A) = k^n det A$$
.

- ▲ ► Let A, B, C be $n \times n$ matrices that are identical except that the i^{th} row of A is the sum of the i^{th} rows of B and C then det $A = \det B + \det C$.
 - ▶ BUT, $\det A \neq \det B + \det C$ in general.
 - \blacktriangleright This property + previous property \Longrightarrow

determinant is linear in each row.

• If two distinct rows are identical then det A = 0.

• If two distinct rows are proportional then det A = 0.

▲ ► Adding a multiple of one row to another row does not change the value of the determinant.

 $\blacktriangleright \det(A B) = (\det A) (\det B).$

4 A square matrix is invertible if and only if det $A \neq 0$.

$$\blacktriangleright \quad \det A^{-1} = \frac{1}{\det A}$$

4 The homogeneous linear system $AX = \mathbf{0}$ has the unique solution $X = \mathbf{0}$ if and only if det $A \neq 0$.

4 The determinant of a matrix consists of sums and products of its entries. If the entries are polynomials in some variable, say x, the the determinant is a polynomial in x. Often it is of interest to know the values of x that make the determinant zero.