(i) The determinant of a 1 by 1 matrix $[a]$ is a.
(ii) Suppose a definition is provided for a $n-1$ by $n-1$ determinant.

Define

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \ldots & \\
& & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} \tilde{A}_{1 j}
$$

where $\tilde{A}_{i j}$ is the matrix obtained from A by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column.
notes:
The matrix $\tilde{A}_{i j}$ is sometimes called the $i j^{\text {th }}$ minor matrix of A.

Think of this approach as the definition by expansion along the first row or expansion by minors along the first row.

$\left(b_{1}, b_{2}, b_{3}\right)$

$\underline{\text { Properties of Determinants }}$

Let A be an $n \times n$ matrix.

- If A has a row or column of zeros, $\operatorname{det} A=0$.
- If A is a triangular matrix, $\operatorname{det} A$ is the product of the elements on the main diagonal.

$$
\text { - } \operatorname{det} I=1 .
$$

- $\operatorname{det} A=\operatorname{det} A^{T}$.
* - Interchanging any two rows (or columns) multiplies the determinant by -1 .

Since $\operatorname{det} A=\operatorname{det} A^{T}$, the remaining properties will be stated only in terms of rows.

4- If a row of A is multiplied by a constant k, the determinant of the resulting matrix is $k \operatorname{det} A$.

- NOTE, $\operatorname{det}(k A)=k^{n} \operatorname{det} A$.
* Let A, B, C be $n \times n$ matrices that are identical except that the $i^{\text {th }}$ row of A is the sum of the $i^{\text {th }}$ rows of B and C then $\operatorname{det} A=\operatorname{det} B+\operatorname{det} C$.
- BUT, $\operatorname{det} A \neq \operatorname{det} B+\operatorname{det} C$ in general.
- This property + previous property \Longrightarrow determinant is linear in each row.
* - If two distinct rows are identical then $\operatorname{det} A=0$.
- If two distinct rows are proportional then $\operatorname{det} A=0$.
- - Adding a multiple of one row to another row does not change the value of the determinant.
- $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

4 A square matrix is invertible if and only if $\operatorname{det} A \neq 0$.

- $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.
\$ The homogeneous linear system $A X=\mathbf{0}$ has the unique solution $X=\mathbf{0}$ if and only if $\operatorname{det} A \neq 0$.

2 The determinant of a matrix consists of sums and products of its entries. If the entries are polynomials in some variable, say x, the the determinant is a polynomial in x. Often it is of interest to know the values of x that make the determinant zero.

