<u>Theorem:</u> Let A be a square matrix and let A_k be the reduced matrix obtained from A by a sequence E_1, E_2, \dots, E_k of elementary row operations. A is invertible if and only if $A_k = I$. Moreover, if E_1, E_2, \dots, E_k is a sequence of elementary row oper-

ations that takes A to I, then the same sequence takes I to A^{-1} .

Method to find the inverse of a matrix

If A is an $n \times n$ matrix, form the $n \times (2n)$ matrix [A | I] and perform elementary row operations until the first n columns form a reduced matrix. Assume the result is [R | B] so we have

$$\begin{bmatrix} A \mid I \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} R \mid B \end{bmatrix}$$

If R = I, then A is invertible and $A^{-1} = B$.

If $R \neq I$, then A is not invertible and A^{-1} does not exist.

- 1. I is invertible and $I^{-1} = I$.
- 2. If A is invertible, so is A^{-1} and $(A^{-1})^{-1} = A$.
- 3. If A and B are invertible, so is AB and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

4. If A is invertible, so is its transpose A^T and

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}.$$