Theorem: Let A be a square matrix and let A_{k} be the reduced matrix obtained from A by a sequence $E_{1}, E_{2}, \cdots, E_{k}$ of elementary row operations. A is invertible if and only if $A_{k}=I$.

Moreover, if $E_{1}, E_{2} . \cdots, E_{k}$ is a sequence of elementary row operations that takes A to I, then the same sequence takes I to A^{-1}.

Method to find the inverse of a matrix
If A is an $n \times n$ matrix, form the $n \times(2 n)$ matrix $[A \mid I]$ and perform elementary row operations until the first n columns form a reduced matrix. Assume the result is $[R \mid B]$ so we have

$$
[A \mid I] \longrightarrow \cdots \longrightarrow[R \mid B]
$$

If $R=I$, then A is invertible and $A^{-1}=B$.
If $R \neq I$, then A is not invertible and A^{-1} does not exist.
$\underline{\text { Basic Properties of Matrix Inverse }}$ Assume A, B and the identity, I, are $n \times n$.

1. I is invertible and $I^{-1}=I$.
2. If A is invertible, so is A^{-1} and $\left(A^{-1}\right)^{-1}=A$.
3. If A and B are invertible, so is $A B$ and

$$
(A B)^{-1}=B^{-1} A^{-1} .
$$

4. If A is invertible, so is its transpose A^{T} and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

